21 research outputs found
Contribution à la mise en oeuvre d'estimateurs d'erreur pour les problèmes de contact dans un logiciel industriel.
In the field of mechanical engineering, numerical simulation has become an indispensable tool to predict the response of a structure to mechanical load.The simulation allows to reduce conception costs using numerical models instead of costly prototypes.Engineers use increasingly complex structures; it is now common to treat structures composed of several deformable components interacting. The studies carried out in this work are based on the equations of continuum mechanics with contact.However, these numerical simulations involve a discretized version of a continuous mathematical model (finite element analysis). Therefore, they lead only to an approximation of the exact solution of the reference problem.In an industrial context, the results of a finite element calculation must satisfy certain quality requirements. The purpose of an error estimation is to evaluate the distance between the exact solution and an approximate solution of the problem.Methods for evaluating the global error due to the problem's discretization have been studied for several years. However the use of error estimation tools is still not widespread in industry (availability in industrial softwares , reliability, calculation costs, difficulty of use ...)The objective of this work is to propose a parallelized estimation method based on the concept of constitutive relation error, adapted to industrial constraints. Furthermore, to make it quickly available for design office, the choice was made to develop the method directly in the industrial software SAMCEF during the ANR project ROMMA.La simulation numérique est devenue un outil omniprésent dans les milieux industriels. En particulier, dans le domaine de l’ingénierie mécanique où l’objectif est de prévoir la réponse d'une structure à des sollicitations. La simulation est dans ce cas une aide au dimensionnement qui permet de réduire le développement de prototypes coûteux. Les systèmes étudiés en bureau d’études étant de plus en plus complexes, il est courant de traiter des structures comportant plusieurs composants déformables en interaction. Le contexte d’étude repose donc sur les équations de la mécanique des milieux continus avec prise en compte du contact. Cependant, l’obtention des solutions exactes de ce système d’équation aux dérivées partielles n’est en général pas envisageable. L’obtention d’une solution passe par l'utilisation d’une discrétisation du modèle. Ainsi le résultat obtenu est une approximation de la solution exacte du problème traité. En situation industrielle il est nécessaire de pouvoir contrôler la qualité de ce résultat approché, c’est à dire mesurer l’écart entre la solution exacte (inconnue) et la solution approchée (disponible), ce sont des outils de vérification. Il existe de nombreux travaux sur l’estimation d’erreur permettant d’évaluer l’écart entre les solutions exactes et approchées. Malgré cela, l’utilisation des outils de vérification (estimateur de l’erreur commise) reste encore peu répandue dans l’industrie (disponibilité dans les codes de calculs, fiabilité, coûts de calcul, difficulté d’utilisation …) Dans ce travail, nous proposons une méthode d’estimation d’erreur, basée sur le concept d’erreur en relation de comportement, parallélisable et permettant s’adapter aux contraintes industrielles (pertes d’information, problèmes mal connus …). De plus, afin de la rendre l’outil rapidement disponible en bureau d’étude, le choix a été fait de développer la méthode directement dans le code de calcul industriel SAMCEF lors du projet ANR ROMMA
Experimental versus computational determination of the dynamical model of a glider
In this paper we present and compare two air- craft model identification techniques that are easy to implement and suitable for various air- plane models, gliders comprised. One of them relies on flight data, while the second one uses a virtual model of the plane. To obtain the flight data, we propose a flight protocol that is simple to follow. Our analysis show that the methods find resembling results for similar airspeeds
Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.
RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Error estimator implemented in finite element industrial code for contact
La simulation numérique est devenue un outil omniprésent dans les milieux industriels. En particulier, dans le domaine de l’ingénierie mécanique où l’objectif est de prévoir la réponse d'une structure à des sollicitations. La simulation est dans ce cas une aide au dimensionnement qui permet de réduire le développement de prototypes coûteux. Les systèmes étudiés en bureau d’études étant de plus en plus complexes, il est courant de traiter des structures comportant plusieurs composants déformables en interaction. Le contexte d’étude repose donc sur les équations de la mécanique des milieux continus avec prise en compte du contact. Cependant, l’obtention des solutions exactes de ce système d’équation aux dérivées partielles n’est en général pas envisageable. L’obtention d’une solution passe par l'utilisation d’une discrétisation du modèle. Ainsi le résultat obtenu est une approximation de la solution exacte du problème traité. En situation industrielle il est nécessaire de pouvoir contrôler la qualité de ce résultat approché, c’est à dire mesurer l’écart entre la solution exacte (inconnue) et la solution approchée (disponible), ce sont des outils de vérification. Il existe de nombreux travaux sur l’estimation d’erreur permettant d’évaluer l’écart entre les solutions exactes et approchées. Malgré cela, l’utilisation des outils de vérification (estimateur de l’erreur commise) reste encore peu répandue dans l’industrie (disponibilité dans les codes de calculs, fiabilité, coûts de calcul, difficulté d’utilisation …) Dans ce travail, nous proposons une méthode d’estimation d’erreur, basée sur le concept d’erreur en relation de comportement, parallélisable et permettant s’adapter aux contraintes industrielles (pertes d’information, problèmes mal connus …). De plus, afin de la rendre l’outil rapidement disponible en bureau d’étude, le choix a été fait de développer la méthode directement dans le code de calcul industriel SAMCEF lors du projet ANR ROMMA.In the field of mechanical engineering, numerical simulation has become an indispensable tool to predict the response of a structure to mechanical load.The simulation allows to reduce conception costs using numerical models instead of costly prototypes.Engineers use increasingly complex structures; it is now common to treat structures composed of several deformable components interacting. The studies carried out in this work are based on the equations of continuum mechanics with contact.However, these numerical simulations involve a discretized version of a continuous mathematical model (finite element analysis). Therefore, they lead only to an approximation of the exact solution of the reference problem.In an industrial context, the results of a finite element calculation must satisfy certain quality requirements. The purpose of an error estimation is to evaluate the distance between the exact solution and an approximate solution of the problem.Methods for evaluating the global error due to the problem's discretization have been studied for several years. However the use of error estimation tools is still not widespread in industry (availability in industrial softwares , reliability, calculation costs, difficulty of use ...)The objective of this work is to propose a parallelized estimation method based on the concept of constitutive relation error, adapted to industrial constraints. Furthermore, to make it quickly available for design office, the choice was made to develop the method directly in the industrial software SAMCEF during the ANR project ROMMA
Constitutive relation error estimator : an admissible field construction using a domain decomposition strategy
We are interested in error estimate using the constitutive relation error
concept. The construction of an admissible fields is a pillar of the method and is revisited
in this work using a domain decomposition strategy. An approximation is introduced in the estimate
of the error and makes it possible to separate the initial global problem into several local ones
(see [1]).
An analysis of the cpu-cost is presented in this work, it shows clearly the interest on large
problems. The numerical results also shows that the quality loss introduced by the approximation
is widely acceptable in a practical use. Some perspectives to this works
will also be presented in the field of non-linear mechanics
Robust goal-oriented error estimation in the stochastic framework
International audienc
Robust goal-oriented error estimation based on the constitutive relation error for stochastic problems
International audienceIn this paper, we aim at extending to stochastic models a general and robust goal-oriented error estimation method presented in previous works. This method, which is based on the constitutive relation error and classical extraction techniques, enables to obtain strict bounds on quantities of interest. In the stochastic framework, several aspects are revisited in the current paper:(i) the construction of admissible elds, which is a pillar of the constitutive relation error; (ii) the error bounding itself; (iii) the splitting of error sources that may enable to drive adaptive procedures e ectively. Performances of the proposed approach are illustrated on two-dimensional applications
Generating assembly models for adaptive simulations
International audienceAircraft and automotive industries face increasing needs in generating large and complex simulation models, especially at the level of assemblies, sub-systems of complex products. Starting from the digital representation of sub-systems, i.e., digital mock-ups (DMU), as available from CAD software, the major steps of the simulation model generation are described. This incorporates the geometry analysis of the DMU to derive functional information. Subsequently, this information is used to perform model simplifications and domain decomposition consistently with the simulation objectives. Given the complexity of these models, the domain decomposition is a key issue to adaptive simulations to be coupled with COFAST software as well as error estimators using the LATIN method to avoid solving large systems and to take advantage of their decoupling capabilities. An assembly of bolted components illustrates the proposed approach