24 research outputs found

    THE CC1 PROJECT – SYSTEM FOR PRIVATE CLOUD COMPUTING

    Get PDF
    The main features of the Cloud Computing system developed at IFJ PAN are described. The project is financed from the structural resources provided by the European Commission and the Polish Ministry of Science and Higher Education (Innovative Economy, National Cohesion Strategy). The system delivers a solution for carrying out computer calculations on a Private Cloud computing infrastructure. It consists of an intuitive Web based user interface, a module for the users and resources administration and the standard EC2 interface implementation. Thanks to the distributed character of the system it allows for the integration of a geographically distant federation of computer clusters within a uniform user environment

    Global exposure of population and land‐use to meteorological droughts under different warming levels and SSPs: a CORDEX‐based study

    Get PDF
    Global warming is likely to cause a progressive drought increase in some regions, but how population and natural resources will be affected is still underexplored. This study focuses on global population, forests, croplands and pastures exposure to meteorological drought hazard in the 21st century, expressed as frequency and severity of drought events. As input, we use a large ensemble of climate simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX), population projections from the NASA-SEDAC dataset and land-use projections from the Land-Use Harmonization 2 project for 1981–2100. The exposure to drought hazard is presented for five Shared Socioeconomic Pathways (SSP1-SSP5) at four Global Warming Levels (GWLs: 1.5°C to 4°C). Results show that considering only Standardized Precipitation Index (SPI; based on precipitation), the SSP3 at GWL4 projects the largest fraction of the global population (14%) to experience an increase in drought frequency and severity (versus 1981–2010), with this value increasing to 60% if temperature is considered (indirectly included in the Standardized Precipitation-Evapotranspiration Index, SPEI). With SPEI, considering the highest GWL for each SSP, 8 (for SSP2, SSP4, SSP5) and 11 (SSP3) billion people, that is, more than 90%, will be affected by at least one unprecedented drought. For SSP5 at GWL4, approximately 2 × 106^{6} km2^{2} of forests and croplands (respectively, 6% and 11%) and 1.5 × 106^{6} km2^{2} of pastures (19%) will be exposed to increased drought frequency and severity according to SPI, but for SPEI this extent will rise to 17 × 106^{6} km2^{2} of forests (49%), 6 × 106^{6} km2^{2} of pastures (78%) and 12 × 106^{6} km2^{2} of croplands (67%), being mid-latitudes the most affected. The projected likely increase of drought frequency and severity significantly increases population and land-use exposure to drought, even at low GWLs, thus extensive mitigation and adaptation efforts are needed to avoid the most severe impacts of climate change

    The role of topography on projected rainfall change in mid-latitude mountain regions

    No full text
    Change to precipitation in a warming climate holds many implications for water management into the future, and an enhancement of a precipitation decrease or increase on or around mountains would have numerous impacts. Here, an intermediate resolution regional climate model (RCM) ensemble projects enhanced precipitation decrease on the windward slopes of over many mid-latitude mountains in winter, consistent with theory and model studies of idealised mountain ranges. This ensemble projects that an increase in convective rainfall determines the sign of total rainfall change in many regions in summer, only some of which are on or near mountains such as the European Alps. These same projected changes are present in inland slopes of the Australian Alps compared to surrounding regions as simulated by three RCM ensembles (the intermediate resolution and two high resolution ensembles), which agree on an enhanced precipitation decrease on the windward slopes in winter and spring, as well as an enhanced precipitation increase in summer driven by an increase in convective rainfall. The ensembles disagree on an enhanced precipitation decrease in autumn. The results represent regional-scale added value in the climate change signal of projections from high resolution models in cooler seasons, but suggest that the specific model components such as convection schemes strongly influence projections of summer rainfall change. Confidence in the simulation of change in convective rainfall, or convection-permitting modelling may be needed to raise confidence in summer rainfall projections over mountains

    Compounding impact of deforestation on Borneo's climate during El Niño events

    No full text
    Both deforestation and El Niño events influence Borneo's climate, but their interaction is not well understood. Borneo's native forest cover decreased by 37.1% between 1980 and 2015 with large areas being replaced by oil palm and a mosaic of plantations and regrowth vegetation. The island is also affected by El Niño events, resulting in severe droughts and fires. Here, we used a high-resolution climate model to simulate and evaluate how deforestation and El Niño episodes interact during the 1980-2016 period. Simulations revealed that deforestation resulted in a warmer and drier climate with the most pronounced changes in the extensively deforested regions of eastern and southern Borneo. Deforestation-linked impacts were more pronounced under El Niño than neutral (non El Niño/La Niña) conditions. Changes in climate mainly corresponded with areas with the most deforestation. There was a significant increase in the frequency of hotter and drier climatic extremes, with the probability distribution of temperature, humidity and aridity shifting from narrow to a broadening distribution. For example, the frequency of 90th percentile of the hot temperatures (defined as average monthly temperatures >28.9oC) during the dry season increased from 10% for neutral conditions for the 1980 forest cover to 22% for neutral conditions for the 2015 forest cover. For strong El Niño events, the frequency increased from 15.6% to 32.5%. Replacement of intact native forest with oil palm resulted in increased frequency of hot temperatures to 49% for neutral and 74% for El Niño conditions. Hotter and drier conditions are likely to increase tree mortality and forest flammability (and fire-driven deforestation). The continued reduction and fragmentation of Borneo's forest cover diminishes the ability to moderate regional climate impacted by larger scale and other regional/local human climate forcings
    corecore