158 research outputs found

    Oxidative stress is associated with suspected non-alcoholic fatty liver disease and all-cause mortality in the general population

    Get PDF
    Background & Aims: Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation, inflammation and an imbalanced redox homeostasis. We hypothesized that systemic free thiol levels, as a proxy of systemic oxidative stress, are associated with NAFLD. Methods: Protein-adjusted serum free thiol concentrations were determined in participants from the Prevention of Renal and Vascular End-Stage Disease (PREVEND) cohort study (n = 5562). Suspected NAFLD was defined by the Fatty Liver Index (FLI ≥ 60) and Hepatic Steatosis Index (HSI > 36). Results: Protein-adjusted serum free thiols were significantly reduced in subjects with FLI ≥ 60 (n = 1651). In multivariable logistic regression analyses, protein-adjusted serum free thiols were associated with NAFLD (FLI ≥ 60) (OR per doubling of concentration: 0.78 [95% CI 0.64-0.96], P =.016) even when adjusted for potential confounding factors, including systolic blood pressure, diabetes, current smoking, use of alcohol and total cholesterol (OR 0.80 [95% CI 0.65-0.99], P =.04). This association lost its significance (OR 0.94 [95% CI 0.73-1.21], P =.65) after additional adjustment for high-sensitive C-reactive protein. Stratified analyses showed significantly differential associations of protein-adjusted serum free thiol concentrations with suspected NAFLD for gender (P <.02), hypertension (P <.001) and hypercholesterolemia (P <.003). Longitudinally, protein-adjusted serum free thiols were significantly associated with the risk of all-cause mortality in subjects with NAFLD (FLI ≥ 60) (HR 0.27 [95% CI 0.17-0.45], P <.001). Conclusion: Protein-adjusted serum free thiol levels are reduced and significantly associated with all-cause mortality in subjects with suspected NAFLD. Quantification of free thiols may be a promising, minimally invasive strategy to improve detection of NAFLD and associated risk of all-cause mortality in the general population

    Structural basis for chain release from the enacyloxin polyketide synthase

    Get PDF
    Modular polyketide synthases and nonribosomal peptide synthetases are molecular assembly lines consisting of several multienzyme subunits that undergo dynamic self-assembly to form a functional mega-complex. N- and C-terminal docking domains are usually responsible for mediating interactions between subunits. Here we show that communication between two nonribosomal peptide synthetase subunits responsible for chain release from the enacyloxin polyketide synthase, which assembles an antibiotic with promising activity against Acinetobacter baumannii, is mediated by an intrinsically disordered short linear motif and a ß-hairpin docking domain. The structures, interactions and dynamics of these subunits are characterised using several complementary biophysical techniques, providing extensive insights into binding and catalysis. Bioinformatics analyses reveal that short linear motif/ß-hairpin docking domain pairs mediate subunit interactions in numerous nonribosomal peptide and hybrid polyketide-nonribosomal peptide synthetases, including those responsible for assembling several important drugs. Short linear motifs and ß-hairpin docking domains from heterologous systems are shown to interact productively, highlighting the potential of such interfaces as tools for biosynthetic engineering

    Anti-tumor activity against multiple myeloma by combination of KW-2478, an Hsp90 inhibitor, with bortezomib

    Get PDF
    Heat shock protein 90 (Hsp90) is a promising target for anti-tumor therapy. We previously reported the anti-tumor activity of a novel Hsp90 inhibitor, KW-2478, in multiple myeloma (MM) as a single agent. In this study, we examined the combinational effect of KW-2478 and bortezomib, a proteasome inhibitor, in vitro and in vivo. In vitro, KW-2478 enhanced bortezomib-induced cell growth inhibition, both in MM cell lines and primary patient MM cells. The combination of KW-2478 and bortezomib also induced caspase activation in MM cell lines. Interestingly, the combination synergistically enhanced the expression of Hsp70B, a homolog of Hsp70, in human MM cells and peripheral blood mononuclear cells, indicating Hsp70B could be a surrogate biomarker for the combination of Hsp90 and proteasome inhibitors. In vivo, the combination of KW-2478 with bortezomib showed synergistic anti-tumor activity without significant body weight loss in a subcutaneously inoculated human myeloma model. Furthermore, the combination also showed synergistic reduction of tumor burden in bone marrow in an orthotopic myeloma model. Our results strongly suggest that combination of KW-2478 with bortezomib could exhibit enhanced anti-tumor activity against human myeloma

    Structural Basis for GTP-Dependent Dimerization of Hydrogenase Maturation Factor HypB

    Get PDF
    Maturation of [NiFe]-hydrogenase requires the insertion of iron, cyanide and carbon monoxide, followed by nickel, to the catalytic core of the enzyme. Hydrogenase maturation factor HypB is a metal-binding GTPase that is essential for the nickel delivery to the hydrogenase. Here we report the crystal structure of Archeoglobus fulgidus HypB (AfHypB) in apo-form. We showed that AfHypB recognizes guanine nucleotide using Asp-194 on the G5 loop despite having a non-canonical NKxA G4-motif. Structural comparison with the GTPγS-bound Methanocaldococcus jannaschii HypB identifies conformational changes in the switch I region, which bring an invariant Asp-72 to form an intermolecular salt-bridge with another invariant residue Lys-148 upon GTP binding. Substitution of K148A abolished GTP-dependent dimerization of AfHypB, but had no significant effect on the guanine nucleotide binding and on the intrinsic GTPase activity. In vivo complementation study in Escherichia coli showed that the invariant lysine residue is required for in vivo maturation of hydrogenase. Taken together, our results suggest that GTP-dependent dimerization of HypB is essential for hydrogenase maturation. It is likely that a nickel ion is loaded to an extra metal binding site at the dimeric interface of GTP-bound HypB and transferred to the hydrogenase upon GTP hydrolysis

    Association Rate Constants of Ras-Effector Interactions Are Evolutionarily Conserved

    Get PDF
    Evolutionary conservation of protein interaction properties has been shown to be a valuable indication for functional importance. Here we use homology interface modeling of 10 Ras-effector complexes by selecting ortholog proteins from 12 organisms representing the major eukaryotic branches, except plants. We find that with increasing divergence time the sequence similarity decreases with respect to the human protein, but the affinities and association rate constants are conserved as predicted by the protein design algorithm, FoldX. In parallel we have done computer simulations on a minimal network based on Ras-effector interactions, and our results indicate that in the absence of negative feedback, changes in kinetics that result in similar binding constants have strong consequences on network behavior. This, together with the previous results, suggests an important biological role, not only for equilibrium binding constants but also for kinetics in signaling processes involving Ras-effector interactions. Our findings are important to take into consideration in system biology approaches and simulations of biological networks

    Image analysis in light sheet fluorescence microscopy images of transgenic zebrafish vascular development

    Get PDF
    The zebrafish has become an established model to study vascular development and disease in vivo. However, despite it now being possible to acquire high-resolution data with state-of-the-art fluorescence microscopy, such as lightsheet microscopy, most data interpretation in pre-clinical neurovascular research relies on visual subjective judgement, rather than objective quantification. Therefore, we describe the development of an image analysis workflow towards the quantification and description of zebrafish neurovascular development. In this paper we focus on data acquisition by lightsheet fluorescence microscopy, data properties, image pre-processing, and vasculature segmentation, and propose future work to derive quantifications of zebrafish neurovasculature development

    Synergistic Apoptosis Induction in Leukemic Cells by the Phosphatase Inhibitor Salubrinal and Proteasome Inhibitors

    Get PDF
    Cells adapt to endoplasmic reticulum (ER)-stress by arresting global protein synthesis while simultaneously activating specific transcription factors and their downstream targets. These processes are mediated in part by the phosphorylation-dependent inactivation of the translation initiation factor eIF2alpha. Following restoration of homeostasis protein synthesis is resumed when the serine/threonine-protein phosphatase PP1 dephosphorylates and reactivates eIF2alpha. Proteasome inhibitors, used to treat multiple myeloma patients evoke ER-stress and apoptosis by blocking the ER-associated degradation of misfolded proteins (ERAD), however, the role of eIF2alpha phosphorylation in leukemic cells under conditions of proteasome inhibitor-mediated ER stress is currently unclear.Bcr-Abl-positive and negative leukemic cell lines were used to investigate the functional implications of PP1-related phosphatase activities on eIF2alpha phosphorylation in proteasome inhibitor-mediated ER stress and apoptosis. Rather unexpectedly, salubrinal, a recently identified PP1 inhibitor capable to protect against ER stress in various model systems, strongly synergized with proteasome inhibitors to augment apoptotic death of different leukemic cell lines. Salubrinal treatment did not affect the phosphorlyation status of eIF2alpha. Furthermore, the proapoptotic effect of salubrinal occurred independently from the chemical nature of the proteasome inhibitor, was recapitulated by a second unrelated phosphatase inhibitor and was unaffected by overexpression of a dominant negative eIF2alpha S51A variant that can not be phosphorylated. Salubrinal further aggravated ER-stress and proteotoxicity inflicted by the proteasome inhibitors on the leukemic cells since characteristic ER stress responses, such as ATF4 and CHOP synthesis, XBP1 splicing, activation of MAP kinases and eventually apoptosis were efficiently abrogated by the translational inhibitor cycloheximide.Although PP1 activity does not play a major role in regulating the ER stress response in leukemic cells, phosphatase signaling nevertheless significantly limits proteasome inhibitor-mediated ER-stress and apoptosis. Inclusion of specific phosphatase inhibitors might therefore represent an option to improve current proteasome inhibitor-based treatment modalities for hematological cancers

    Safety of intravenous ferric carboxymaltose versus oral iron in patients with nondialysis-dependent CKD: an analysis of the 1-year FIND-CKD trial.

    Get PDF
    Background: The evidence base regarding the safety of intravenous (IV) iron therapy in patients with chronic kidney disease (CKD) is incomplete and largely based on small studies of relatively short duration. Methods: FIND-CKD (ClinicalTrials.gov number NCT00994318) was a 1-year, open-label, multicenter, prospective study of patients with nondialysis-dependent CKD, anemia and iron deficiency randomized (1:1:2) to IV ferric carboxymaltose (FCM), targeting higher (400-600 µg/L) or lower (100-200 µg/L) ferritin, or oral iron. A post hoc analysis of adverse event rates per 100 patient-years was performed to assess the safety of FCM versus oral iron over an extended period. Results: The safety population included 616 patients. The incidence of one or more adverse events was 91.0, 100.0 and 105.0 per 100 patient-years in the high ferritin FCM, low ferritin FCM and oral iron groups, respectively. The incidence of adverse events with a suspected relation to study drug was 15.9, 17.8 and 36.7 per 100 patient-years in the three groups; for serious adverse events, the incidence was 28.2, 27.9 and 24.3 per 100 patient-years. The incidence of cardiac disorders and infections was similar between groups. At least one ferritin level ≥800 µg/L occurred in 26.6% of high ferritin FCM patients, with no associated increase in adverse events. No patient with ferritin ≥800 µg/L discontinued the study drug due to adverse events. Estimated glomerular filtration rate remained the stable in all groups. Conclusions: These results further support the conclusion that correction of iron deficiency anemia with IV FCM is safe in patients with nondialysis-dependent CKD
    corecore