6 research outputs found
Delay-Intolerant Covert Communications with Either Fixed or Random Transmit Power
In this paper, we study delay-intolerant covert communications in additive white Gaussian noise (AWGN) channels with a finite block length, i.e., a finite number of channel uses. Considering the maximum allowable number of channel uses to be N, it is not immediately clear whether the actual number of channel uses, denoted by n, should be as large as N or smaller for covert communications. This is because a smaller n reduces a warden’s chance to detect the communications due to fewer observations, but also reduces the chance to transmit information. We show that n=N is indeed optimal to maximize the amount of information bits that can be transmitted, subject to any covert communication constraint in terms of the warden’s detection error probability. To better make use of the warden’s uncertainty due to the finite block length, we also propose to use uniformly distributed random transmit power to enhance covert communications. Our examination shows that the amount of information that can be covertly transmitted logarithmically increases with the number of random power levels, which indicates that most of the benefit of using random transmit power is achieved with just a few different power levels.This work was supported by the Australian Research Council’s Discovery Projects under Grant DP180104062
Channel training design in full-duplex wiretap channels to enhance physical layer security
In this work, we propose a new channel training (CT) scheme to enhance physical layer security in a full-duplex wiretap channel, where the multi-antenna and full-duplex receiver simultaneously receives the information signal and transmits artificial noise (AN). In order to suppress the self-interference caused by AN, the receiver has to estimate the self-interference channel prior to the data communication phase. In the proposed CT scheme, the receiver transmits limited pilot symbols which are known only to itself, which prevents the eavesdropper from estimating the jamming channel from the receiver to the eavesdropper, hence effectively degrades the eavesdropping capability. Compared with the traditional CT scheme that uses publicly known pilots, the newly proposed secret CT scheme offers significantly better performance when the number of antennas at the eavesdropper is larger than one, e.g., Ne > 1. The optimal power allocation between CT and data/AN transmission at the legitimate transmitter/receiver is determined for the proposed secret CT scheme.This work was supported by the Australian Research Council’s Discovery Projects (DP150103905)
Recommended from our members
Theta mediated dynamics of human hippocampal-neocortical learning systems in memory formation and retrieval.
Episodic memory arises as a function of dynamic interactions between the hippocampus and the neocortex, yet the mechanisms have remained elusive. Here, using human intracranial recordings during a mnemonic discrimination task, we report that 4-5 Hz (theta) power is differentially recruited during discrimination vs. overgeneralization, and its phase supports hippocampal-neocortical when memories are being formed and correctly retrieved. Interactions were largely bidirectional, with small but significant net directional biases; a hippocampus-to-neocortex bias during acquisition of new information that was subsequently correctly discriminated, and a neocortex-to-hippocampus bias during accurate discrimination of new stimuli from similar previously learned stimuli. The 4-5 Hz rhythm may facilitate the initial stages of information acquisition by neocortex during learning and the recall of stored information from cortex during retrieval. Future work should further probe these dynamics across different types of tasks and stimuli and computational models may need to be expanded accordingly to accommodate these findings