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Abstract—In this work, we study delay-intolerant covert com-
munications in additive white Gaussian noise (AWGN) channels
with a finite blocklength, i.e., a finite number of channel uses.
Considering the maximum allowable number of channel uses to
be N , it is not immediately clear whether the actual number
of channel uses, denoted by n, should be as large as N or
smaller for covert communications. This is because a smaller
n reduces a warden’s chance to detect the communications due
to fewer observations, but also reduces the chance to transmit
information. We show that n = N is indeed optimal to maximize
the amount of information bits that can be transmitted, subject
to any covert communication constraint in terms of the warden’s
detection error probability. To better make use of the warden’s
uncertainty due to the finite blocklength, we also propose to
use uniformly distributed random transmit power to enhance
covert communications. Our examination shows that the amount
of information that can be covertly transmitted logarithmically
increases with the number of random power levels, which
indicates that most of the benefit of using random transmit power
is achieved with just a few different power levels.

Index Terms—Covert communications, delay-intolerant, finite
blocklength, covertness, random transmit power.

I. INTRODUCTION

As people become more dependent on wireless devices to
share private information, crucial concerns about the security
and privacy of wireless communications are emerging since
a large amount of confidential information (e.g., email/bank
account information and password, credit card details) is trans-
ferred over wireless networks [1, 2]. In addition to the secrecy
and integrity of the transmitted information, in some scenarios
a user may wish to transmit messages over wireless networks
without being detected. This is due to the fact that the exposure
of the transmission may disclose the user’s location, which
may violate the privacy of the user. Against this background,
as the line of last defence, hiding wireless transmissions meets
the ever-increasing desire of strong security and privacy, which
is also explicitly desired by government and military bodies
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(e.g., a stealth fighter desires to hide itself from enemies while
communicating with its own military bases).

In fact, hiding wireless communications was addressed
by spread spectrum techniques in the early 20th century
and a review of spread spectrum techniques can be found
in [4]. However, the fundamental limits of hiding wireless
communications have never been fully examined in terms
of the amount of information that can be conveyed covertly
without being detected. Consequently, the covertness achieved
by spread spectrum techniques has never been proven theoret-
ically and thus the ability of spread spectrum to hide wireless
transmissions is unknown. As such, cutting-edge research on
wireless communication security has called for a rethinking
and generalisation of spread spectrum at a more fundamental
level, which has inspired the emergence of a new security
paradigm termed covert communications (e.g., [5–7]).

In covert communications, a transmitter (Alice) intends
to communicate with a legitimate receiver (Bob) without
being detected by a warden (Willie), who is observing this
communication. Considering additive white Gaussian noise
(AWGN) channels, a square root law has been derived in [8],
which states that Alice can transmit no more than O(

√
n)

bits in n channel uses covertly and reliably to Bob. Following
[8], the scaling constant of the amount of information with
respect to the square root of n was characterized for a broad
class of discrete memoryless channels (DMCs) and AWGN
channels in [9]. We note that this square root law requires
a pre-shared secret to be established between Alice and Bob
prior to Alice’s transmission. This pre-shared secret is proven
to be unnecessary for the square root law when the channel
quality from Alice to Bob is higher than that from Alice to
Willie, for the binary symmetric channel (BSC) [10], DMC
[11], and AWGN channel [11]. Specifically, it is shown that
keyless covert communications without a pre-shared secret are
achievable when the quality of the channel from the transmitter
to the receiver is higher than that of the channel from the
transmitter to the warden [12].

In the square root law we have O(
√
n)/n→ 0 as n→∞,

which indicates that the covert rate is asymptotically zero.
That is, the average number of bits that can be covertly and
reliably transmitted per channel use asymptotically approaches
zero. However, in some scenarios a positive rate has been
shown to be achievable (e.g., [10, 13–16]). For example, it
is proved that a positive rate can be obtained when Willie
has uncertainty about the receiver noise variance in AWGN
channels [14, 16], when Willie does not exactly know the
receiver noise model in BSC channels [10], or when Willie
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lacks knowledge of his channel characteristics in AWGN
and block fading channels [15, 16]. In addition to noise
or channel uncertainty, the impact of unknown transmission
times or uniformed jammers on covert communications was
examined in [17] and [18], respectively. Furthermore, covert
communications with channel uncertainty in fading channels
was studied in [19], where Willie’s detection performance
limits and the achieved covert rates were analyzed. Besides
the fundamental limit of covert communications, some work
has focused on constructing practical encoding schemes and
characterising the required key size in order to achieve the
covert communication limits (e.g., [11, 12, 20]). The authors of
[21] characterized the second order asymptotics of the number
of bits in binary input DMCs that can be transmitted from
Alice to Bob subject to some constraints on the probability of
error and the divergence between the channel output distribu-
tions induced with and without covert communications. Their
results provide useful guidelines on how to expurgate a random
code while maintaining the channel resolvability properties.
Covert communications over parallel Gaussian channels were
studied in [22], where the author focused on deriving an
optimal power allocation strategy to maximize the achievable
number of transmitted information bits subject to some specific
constraints on Bob’s decoding error probability and Willie’s
detection error probability.

In the literature of covert communications, only [14] men-
tions the impact of a finite n (i.e., a limited delay) on the
detection performance at Willie. It is numerically shown that
with noise uncertainty at Willie there may exist an optimal
n that maximizes the rate from Alice to Bob subject to the
covert communication constraint ξ ≥ 1−ε, where ξ is Willie’s
detection error probability (i.e., the sum of false positive and
missed detection rates) and ε is a predetermined small number.
Besides the detection performance at Willie, the assumption
of a finite n also has a significant impact on the achievable
rate R of the transmission from Alice to Bob [23], which has
not been considered in the context of covert communications.
Thus, the impact of finite n on covert communications has
never been fully examined. We note that this impact cannot
be intuitively revealed since, as the blocklength n increases,
although Alice has more time slots over which to spread the
transmit power, Willie will also have more time slots to collect
observations in order to detect the covert transmission. In
particular, although the achievable channel coding rate from
Alice to Bob increases with n [23], a fact which aids the
covert communication from Alice to Bob, the sufficient test
statistic, i.e., the average power of each received symbol, at
Willie converges to a constant value (i.e., the uncertainty in
the test statistic decreases), enabling him to make a more
reliable detection. Thus, it is not immediately obvious that
n should take the largest possible value N . In the limit
where N approaches infinity, Willie will have exact knowledge
of the received power and we cannot hide any transmitted
signal whose power will increase the received power at Willie
beyond the noise power value that he already knows. This is
confirmed by our prior works (e.g., [19, 24–26]), which have
explicitly indicated that the optimal detection performance
at Willie is independent of the known noise power in the

asymptotic scenario with N → ∞. This limit intuitively
shows that making n as large as possible is not necessarily
the optimal strategy, and motivates studying the impact of a
finite n on the performance of covert communications, which
has not been previously clarified. We note that the square-
root law states that O(

√
n) bits can be transmitted covertly

and reliably in n channel uses, which seems to suggest that
n should be as large as possible in the context of covert
communications. However, the proof of the square-root law
in [8] is an asymptotic argument for large enough n, and it
does not establish the behavior of the number of information
bits that can be transferred when n ≤ N , where N is finite
and possibly small. This situation has not been addressed in
the prior literature. Therefore, the established square-root law
cannot be directly applied to conclude that n should be as large
as possible with the constraint n ≤ N . This leaves a significant
gap in our understanding on the fundamental limit of covert
communications in some practical application scenarios, since
in some scenarios the length of a codeword is always finite.
For example, to achieve transmission efficiency (e.g., short
delay) we may require the codeword to be short, e.g., the order
of 100 channel uses for vehicle-to-vehicle communication or
real-time video processing [27].

In this work, we first study the impact of finite n on
both the achievable rate from Alice to Bob and the detection
performance at Willie for AWGN channels, which allows us to
explicitly examine the effect of n on covert communications.
We then propose to use uniformly distributed random transmit
power to enhance the performance of covert communications
with a finite blocklength. Our main contributions are summa-
rized below.

• We consider covert communications with a maximum of
N channel uses, and thus the actual number of channel
uses n for the covert transmission from Alice to Bob
is constrained by n ≤ N . Although a larger n offers
more observations to Willie for detecting the transmis-
sion, we analytically prove that the optimal value of n
that maximizes the amount of information achieved in
one block (denoted by η), subject to a specific covert
communication constraint, is N . This result is consistent
with the conclusion suggested by the square-root law in
the limit of large n [8]. As such, this contribution can be
regarded as a theoretical proof of the conclusion drawn
from the square-root law under the practical constraint
n ≤ N for finite and possibly small N , which is an
extension of the square-root law.

• We characterize the relation between the maximum allow-
able transmit power per channel use, P ∗, and the number
of channel uses, n, subject to the covert communication
constraint. Our examination shows that P ∗ decreases as n
increases, which is due to the fact that increasing n forces
Alice to allocate less power for each channel use to meet
the covert communication constraint. Nevertheless, we
show that the maximum allowable total transmit power
(i.e., nP ∗) increases as n increases, which indicates that
the achievable η should increase with n. The results in
this work, for the first time, provide important insights
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Fig. 1. Illustration of the system model for covert communications.

on the design of covert communications with a finite
blocklength.

• Finally, we propose to use uniformly distributed random
transmit power to enhance the performance of covert
communications. Specifically, we study the impact of
Alice using continuous uniform transmit power (CUTP)
and discrete uniform transmit power (DUTP) on covert
communications. Our results indicate that the achievable
η can be significantly improved by CUTP and DUTP,
especially when η achieved by using a fixed transmit
power (FTP) is low. This result is different from the case
with an infinite n, where adopting random transmit power
does not facilitate covert communications. We also find
that the η achievable by DUTP increases logarithmically
with the number of transmit power levels M , which
indicates that using a relatively small value of M can
provide most of the achievable benefit.

The rest of this paper is organized as follows. Section
II details the system model and performance metrics. Sec-
tion III focuses on FTP and examines the impact of the finite
blocklength n on covert communications. Section IV analyzes
the performance of covert communications when CUTP or
DUTP is adopted at Alice. Section V provides numerical
results to confirm our analysis and compare the performance of
FTP, CUTP, and DUTP. Finally, Section VI draws concluding
remarks.

Notation: Scalar variables are denoted by italic symbols.
Vectors and matrices are denoted by lower-case and upper-case
boldface symbols, respectively. Given a vector x, x[i] denotes
the i-th element of x. The expectation operator is denoted by
E{·} and CN (0, σ2) denotes the circularly-symmetric complex
normal distribution with zero mean and variance σ2.

II. SYSTEM MODEL

A. Channel Model

The system model for covert communications is illustrated
in Fig. 1, where each of Alice, Bob, and Willie is equipped
with a single antenna. We assume the channel from Alice
to Bob and the channel from Alice to Willie are only sub-
ject to AWGN. In covert communications, Alice transmits
n complex-valued symbols x[i] (i = 1, 2, . . . , n) to Bob,
while Willie is passively collecting n observations on Alice’s
transmission to detect whether or not Alice has transmitted
signals to Bob. In this work, we assume that the signals are

constrained by a maximum blocklength denoted by N , which
implies that n ≤ N . We denote the AWGN at Bob and Willie
as rb[i] and rw[i], respectively, where rb[i] ∼ CN (0, σ2

b ),
rw[i] ∼ CN (0, σ2

w), and σ2
b and σ2

w are the noise variances at
Bob and Willie, respectively. In addition, we assume that x[i],
rb[i], and rw[i] are mutually independent. The transmit power
of Alice for each block (n channel uses) is denoted as P ,
i.e., we have E{|x[i]|2} = P . We consider that P is fixed for
different blocks in Section II and P is uniformly distributed
over different blocks in Section III. We assume that Willie is
aware of the value of P when it is fixed. When the value of
P for each block is chosen randomly from either a CUTP or
DUTP distribution, Willie is not aware of the actual value of
P , but knows its distribution. We assume that Bob is always
aware of the value of P by means of a shared secret key.
The consequence of this assumption for both the CUTP and
DUTP will be addressed later. Furthermore, we assume that
Alice adopts Gaussian signaling, i.e., x[i] ∼ CN (0, P ).

B. Binary Hypothesis Testing at Willie

In order to detect the presence of covert communications,
Willie must distinguish between the following two hypotheses:{

H0 : yw[i] = rw[i],

H1 : yw[i] = x[i] + rw[i],
(1)

where H0 denotes the null hypothesis where Alice has not
transmitted signals, H1 denotes the alternative hypothesis
where Alice has transmitted, and yw[i] is the received signal
at Willie.

In this work, we adopt the total detection error probability
to measure Willie’s performance, which is defined as

ξ = α+ β, (2)

where α , Pr(D1|H0) is the false positive rate, β ,
Pr(D0|H1) is the missed detection rate, and D1 and D0 are
the binary decisions that infer whether Alice’s transmission is
present or not, respectively. In covert communications, Willie’s
ultimate goal is to detect the presence of Alice’s transmission
with the minimum detection error probability ξ∗, which is
achieved by using the optimal detector that minimizes ξ.
Then, the covert communication constraint can be expressed
as ξ∗ ≥ 1− ε for a given ε. Normally, the value of ε is small
in order to provide good covertness.

C. Effective Throughput for a Finite Blocklength

The received signal at Bob for each symbol is

yb[i] = x[i] + rb[i]. (3)

As pointed out by [23], the decoding error probability at Bob
is not negligible when n is finite. As such, for a given decoding
error probability δ the channel coding rate from Alice to Bob
can be approximated by [23, 28]

R ≈ log2(1 + γb)−

√
γb(γb + 2)

n(γb + 1)2

Q−1(δ)

ln(2)
, (4)
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where γb = P/σ2
b is the signal-to-noise ratio (SNR) at Bob,

and Q−1(·) is the inverse Q-function. In this work we do not
consider a specific code that can achieve the channel coding
rate given in (4). Instead, we consider Gaussian signaling (i.e.,
x[i] ∼ CN (0, P )) as mentioned in Section II-A. We note that
while the channel coding rate expression in (4) was derived
using a second-order asymptotic analysis, it is based on the
Normal approximation in [23], which has been shown to be
near-optimal for reasonably long block lengths (e.g., n ≥ 100)
and for the Gaussian signaling assumption with average power
constraints that we make in this work.

The square root law states that Alice can covertly and
reliably transmit no more thanO(

√
n) bits in n channel uses to

Bob. Such scaling-law results are obtained when n→∞. As
such, these results cannot be applied in covert communications
with a finite n. In this work, we examine the amount of
information that can be transmitted reliably from Alice to Bob
for a given ε. Noting that the decoding error probability of a
channel with a finite n is not negligible, we adopt the amount
of information bits η that can be transmitted from Alice to Bob
as the main performance metric for covert communications
with a finite blocklength, while utilizing ξ∗ ≥ 1 − ε as the
constraint. Mathematically, η is given by

η = nR(1− δ). (5)

We note that η quantifies the expected number of information
bits that can be reliably transmitted from Alice to Bob,
excluding information bits that suffer from decoding errors.
In this work, we assume that the channel coding rate is
determined for a given decoding error probability as in (4),
i.e., we do not consider the optimization of R or δ to maximize
η, although they both are functions of n. The reason will be
discussed later.

The ultimate goal of our covert communication design is
to achieve the maximum η while guaranteeing the covert
communication constraint ξ∗ ≥ 1 − ε. However, due to the
complicated expression of R given in (4) this maximum η
is mathematically intractable. As such, in this work we first
focus on the design of the number of channel uses and Alice’s
transmit power in order to maximize the total transmit power
nP subject to ξ∗ ≥ 1−ε in Section III and then examine adopt-
ing uniformly distributed random transmit power to facilitate
covert communications in terms of improving η in Section IV.

III. FIXED TRANSMIT POWER AND OPTIMIZATION OF THE
NUMBER OF CHANNEL USES

In this section, we consider FTP where Alice’s transmit
power P is fixed and known by Willie. Specifically, we
determine the optimal n and P that maximize nP subject
to the covert communication constraint ξ∗ ≥ 1− ε.

A. Detection Performance at Willie

For FTP, Alice’s transmit power P is fixed and is known
by Willie. As such, the optimal test that minimizes ξ is the

likelihood ratio test with λ∗ = 1 as the threshold, which is
given by

P1 ,
∏n
i=1 f (yw[i]|H1)

P0 ,
∏n
i=1 f (yw[i]|H0)

D1

≥
<
D0

1, (6)

where f(yw[i]|H0) = CN (0, σ2
w) and f(yw[i]|H1) =

CN (0, P + σ2
w) are the likelihood functions of yw[i] under

H0 and H1, respectively. We note that λ∗ = 1 is due to the
assumption of unknown or equal a priori probabilities for H0

and H1, denoted respectively by P0 and P1. If both P0 and P1

are known, Willie’s detection error probability is reformulated
as ξ = P0α + P1β and the optimal test that minimizes this
reformulated ξ is the likelihood ratio test with λ∗ = P1/P0

as the threshold. We also note that the assumption of equal a
priori probabilities is commonly adopted in the literature of
covert communications (e.g., [8, 14, 17]).

After performing some algebraic manipulations, (6) can be
reformulated as

T ,
1

n

n∑
i=1

|yw[i]|2
D1

≥
<
D0

Γ∗, (7)

where the test statistic T is the average power of each received
symbol at Willie and Γ∗ is the optimal threshold for T , which
is given by

Γ∗ =
(P + σ2

w)σ2
w

P
ln

(
P + σ2

w

σ2
w

)
. (8)

As per (6) and (7), we note that the radiometer with Γ∗ is
indeed the optimal detector when Willie knows the likelihood
functions exactly (i.e., when there are no nuisance parameters
embedded in the likelihood functions). Following (7) and
noting that T is a chi-squared random variable with 2n degrees
of freedom, the likelihood functions of T under H0 and H1

are given by

f(T |H0) =
Tn−1

Γ(n)

(
n

σ2
w

)n
e
− nT
σ2w , (9)

f(T |H1) =
Tn−1

Γ(n)

(
n

P + σ2
w

)n
e
− nT
P+σ2w , (10)

where Γ(n) = (n−1)! is the Gamma function. Then, following
(9) and (10), for an arbitrary threshold Γ the false positive rate
and missed detection rate are given by [13, 14]

α = Pr(T > Γ|H0) = 1−
γ
(
n, nΓ

σ2
w

)
Γ(n)

, (11)

β = Pr(T < Γ|H1) =
γ
(
n, nΓ

P+σ2
w

)
Γ(n)

, (12)

where γ(·, ·) is the lower incomplete Gamma function given
by γ(n, x) =

∫ x
0
e−ttn−1dt. We note that Willie’s minimum

detection error probability ξ∗ can be obtained by substituting
Γ∗ as given in (8) into (11) and (12).
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B. Optimal Blocklength n and Alice’s Transmit Power P

When FTP is adopted at Alice, the total transmit power
over n channel uses is nP , which is flexible and under the
control of Alice (i.e., both n and P are design parameters to
determine). Thus, covert communications for any positive ε
are feasible and thus a positive nP is achievable.

Although ξ∗ can be obtained via an analytical expression
as shown in the previous subsection, it is hard to use for
further analysis due to its use of lower incomplete Gamma
functions. As such, following Pinsker’s inequality we adopt
a lower bound on ξ∗ in this section in order to analytically
determine the optimal n and P . This lower bound is given by
[8, 29, 30]

ξ∗ ≥ 1−
√

1

2
D(P0‖P1), (13)

where D(P0‖P1) is the Kullback-Leibler (KL) divergence
from P0 to P1, which can be expressed as

D(P0‖P1) = n

[
ln

(
P + σ2

w

σ2
w

)
− P

P + σ2
w

]
. (14)

As per (13), we can ensure D(P0‖P1) ≤ 2ε2 in order to
guarantee ξ∗ ≥ 1 − ε. We also note that D(P0‖P1) ≤ 2ε2

is a stricter constraint relative to ξ∗ ≥ 1 − ε. From a
conservative point of view, we adopt D(P0‖P1) ≤ 2ε2 as
the covert communication constraint for FTP in this section
to obtain analytical insights and we will numerically confirm
in Section V that using ξ∗ ≥ 1 − ε as the constraint leads to
similar results. As such, the optimization of n and P in covert
communications with FTP at Alice can be written as

argmax
n,P

nP, (15a)

s.t. D(P0‖P1) ≤ 2ε2, (15b)
n ≤ N. (15c)

We present the solution to (15) in the following theorem.
Theorem 1: The optimal values of n and P that maximize

the total power nP subject to D(P0‖P1) ≤ 2ε2 and n ≤ N ,
are, respectively, given by

n∗ = N, (16)

P ∗ = (σ2
w + P ∗)

[
ln

(
P ∗

σ2
w

+ 1

)
− 2ε2N

]
, (17)

where P ∗ is the solution to the fixed-point equation (17).
Proof: The detailed proof is provided in Appendix A.

Based on Theorem 1, we see that it is best for Alice
to transmit over all the available channel uses for covert
communications, provided that the transmit power is optimized
to maintain the same level of covertness despite the fact that
Willie has more observations when n is larger. The same level
of covertness is achieved by reducing the transmit power when
n becomes larger. It is interesting to observe that neither n∗

nor P ∗ is related to R or δ. This demonstrates that the obtained
n∗ and P ∗ are globally optimal, regardless of the value of the
channel coding rate R or decoding error probability δ. This is
the main reason why we do not consider the optimization of
R or δ in this work. We denote the maximum value of η as
η∗, which is achieved by substituting P ∗ and n∗ into (5).

IV. CONTINUOUS AND DISCRETE UNIFORM TRANSMIT
POWER WITH ALL CHANNEL USES

In this section, we focus on the case with CUTP or DUTP at
Alice, where P is drawn from a continuous or discrete uniform
distribution, respectively. We adopt uniform distributions since
they provide a natural way of bounding the random transmit
power between zero and the maximum power, but it is possible
that other distributions may improve the performance of covert
communications. We leave this interesting issue for future
research. We still assume the average transmit power constraint
(i.e., E{|x[i]|2} = P ) for each block, i.e., P is fixed for
each entire block with n channel uses. Following the previous
section, we set n = N in this section, which is optimal in
terms of maximizing η for both CUTP and DUTP, since it is
optimal for any realization of P . Specifically, we examine the
detection performance at Willie, based on which we determine
the maximum η achieved by CUTP and DUTP subject to the
covert communication constraint ξ∗ ≥ 1− ε.

A. Covert Communication Constraint and Optimal Detector
at Willie

In this section, we use ξ∗ ≥ 1 − ε directly instead of
D(P0‖P1) ≤ 2ε2 as the covert communication constraint. This
is due to the fact that Willie does not know each realization of
P although he knows the distribution. As a result, Willie has to
fix his detection threshold for all the realizations of P and thus
the averaged KL divergence D(P0‖P1) over all realizations
of P is no longer a tight bound on Willie’s detection error
probability (it is only tight when Willie knows each realization
of P and varies his detection threshold accordingly).

We note that CUTP or DUTP does not affect the likelihood
function under H0 (i.e., P0). Since the transmit power P in
CUTP or DUTP is a random variable with a specific a priori
probability fP (p), following (6) the likelihood function under
H1 can be written as

P1 =

∫ N∏
i=1

f (yw[i]|p,H1) fP (p)dp

=

∫ N∏
i=1

exp
(
− |yw[i]|2

2(p+σ2
w)

)
√

2π(p+ σ2
w)

fP (p)dp,

=

∫ exp
(
−

∑N
i=1 |yw[i]|2
2(p+σ2

w)

)
(2π(p+ σ2

w))N/2
fP (p)dp. (18)

As per (18), we note that P1 depends on yw[i] only through∑N
i=1 |yw[i]|2, no matter the explicit expression of fP (p). As

such, based on the Fisher-Neyman factorization theorem [31,
Theorem 7.7.1], we can conclude that with CUTP or DUTP
at Alice, the average power of each received symbol T given
in (7) is still the sufficient test statistic. As such, the detector
at Willie for an arbitrary threshold is given by

T =
1

N

N∑
i=1

|yw[i]|2
D1

≥
<
D0

Γ. (19)

Then, Willie has to find the optimal value of Γ that minimizes
the detection error probability, since this optimal value is not
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the same as that given in (8). To this end, we next derive the
false positive and missed detection rates for CUTP and DUTP
in the following subsections.

B. Continuous Uniform Transmit Power

In this subsection, we consider CUTP, in which Alice’s
transmit power P follows a continuous uniform distribution
with probability density function (pdf)

fP (x) =


1

Pm
when 0 < x ≤ Pm

0 when x ≥ Pm,
(20)

where Pm is Alice’s maximum transmit power. With CUTP
Alice first has to determine the value of Pm that maximizes
η subject to ξ∗ ≥ 1− ε. To this end, we first derive the false
positive rate α and missed detection rate β in the following
theorem.

Theorem 2: For fixed maximum transmit power Pm and
Willie’s detection threshold Γ, the false positive and missed
detection rates for CUTP are, respectively, given by

α = 1−
γ
(
N, NΓ

σ2
w

)
Γ(N)

, (21)

β =
1

(N − 1)Pm

N−2∑
i=0

[
Pm + σ2

w

i!
γ

(
i+ 1,

NΓ

Pm + σ2
w

)
− σ2

w

i!
γ

(
i+ 1,

NΓ

σ2
w

)]
. (22)

Proof: The detailed proof is provided in Appendix B.
The optimal threshold that minimizes ξ = α + β can be

solved by numerically using (21) and (22). Accordingly, the
minimum detection error probability ξ∗ can be determined as
well. We next derive the expected channel coding rate achieved
using CUTP for a fixed decoding error probability.

Theorem 3: Taking the approximation in (4) as an equality,
the expected channel coding rate achieved by Alice with CUTP
for a fixed decoding error probability δ is derived as

R =
Q−1(δ)

γbm ln(2)
√
N

[
2 tan−1

√
γbm

2 + γbm
−
√
γbm(2 + γbm)

]
+

1 + γbm
γbm

log2(1 + γbm)− 1

ln(2)
, (23)

where γbm = Pm/σ
2
b .

Proof: The detailed proof is proved in Appendix C.
With the achieved ξ∗ and R, the optimal value of Pm for

CUTP that maximizes η subject to the covert communication
constraint can be obtained through

P ∗m = argmax
Pm

NR(1− δ), (24a)

s.t. ξ∗ ≥ 1− ε. (24b)

We denote the maximum η as η∗, which is achieved by
substituting P ∗m into η = NR(1− δ). We note that P ∗m is the
solution to ξ∗ ≥ 1− ε since ξ∗ is a monotonically decreasing
function of Pm while R is a monotonically increasing function
of Pm. This is confirmed by the following fact. The expected

transmit power for CUTP over different realizations of P at
Alice is given by

P t =

∫ Pm

0

x

Pm
dx =

Pm
2
, (25)

which monotonically increases with Pm. As such, Alice’s
expected total transmit power NP t monotonically increases
with Pm, which indicates that it becomes easier for Willie to
detect Alice’s transmission (i.e., ξ∗ decreases) as Pm increases
since the radiometer is the optimal detector at Willie. This
also demonstrates that the expected η should monotonically
increase with Pm as discussed in the proof of Theorem 1.

Following Theorem 3, we note that in order to achieve the
expected channel coding rate R given in (23) for a fixed δ,
Alice has to vary R together with her transmit power, so that
the value of R corresponding to each realization of P can
be obtained as in (4). This means that not only the number
of transmit power levels but also the number of potential
codebooks required for covert communications from Alice to
Bob should approach infinity for CUTP. We note that Bob has
to know each R and each realization of Alice’s transmit power,
which should be kept secret from Willie. As such, the size
of the shared secrets between Alice and Bob for CUTP also
approaches infinity. As a result, CUTP is hard to implement
in practice and thus in the following subsection we focus on
the more practical DUTP strategy for Alice to use random
transmit power, where CUTP serves as a benchmark.

C. Discrete Uniform Transmit Power

In this subsection, we consider DUTP at Alice, where the
number of transmit power levels together with the number of
codebooks and the shared secret size are quantized. Specifi-
cally, P follows a discrete uniform distribution, i.e., we have
P = Pi with probability 1/M , where

Pi =
iPm
M

, i = 1, 2, . . . ,M, (26)

Pm is Alice’s maximum transmit power and M is the number
of transmit power levels that Alice can set. While Willie
is unaware of the chosen value of P , he does know the
parameters Pm and M of its distribution. We also note that
Pi > 0 since Pi = 0 corresponds to the null hypothesis H0 in
which Alice does not transmit signals to Bob. Then, for DUTP
with a fixed M Alice first has to determine the value of Pm
that maximizes η subject to ξ∗ ≥ 1− ε. To this end, we next
present the false positive rate α and the missed detection rate
β associated with DUTP.

Theorem 4: For fixed Pm, M , and Γ, the false positive and
missed detection rates for DUTP are, respectively, given by

α = 1−
γ
(
N, NΓ

σ2
w

)
Γ(N)

, (27)

β =
1

M

M∑
i=1

γ
(
N, NMΓ

iPm+Mσ2
w

)
Γ(N)

. (28)

Proof: We note that DUTP does not affect the likelihood
function under H0 (i.e., P0). As such, following (11) the false
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positive rate α for DUTP is given by (27). Following (10) and
(26), the likelihood function of T under H1 for DUTP is given
by

f(T |H1)=
1

M

M∑
i=1

TN−1

Γ(N)

(
NM

iPm+Mσ2
w

)N
e
− NMT
iPm+Mσ2w . (29)

Thus, following (12), the missed detection rate for DUTP is
given by (28).

The optimal threshold at Willie that minimizes ξ for DUTP
can be found numerically using (27) and (28). Accordingly,
ξ∗ can be determined as well. We next present the expected
channel coding rate achieved using DUTP for a fixed decoding
error probability.

Theorem 5: Taking the approximation in (4) as an equality,
the expected channel coding rate achieved by DUTP for a
fixed decoding error probability δ is derived as

R=
1

M

M∑
i=1

[
log2(1+γbi)−

√
γbi(γbi+2)

N(γbi+1)2

Q−1(δ)

ln(2)

]
, (30)

where γbi = iPm/Mσ2
b .

Proof: The result in (30) follows from (4) and (26).
With the obtained ξ∗ and R, the optimal value of Pm for

DUTP can be written as

P ∗m = argmax
Pm

NR(1− δ), (31a)

s.t. ξ∗ ≥ 1− ε. (31b)

We denote the maximum η as η∗, which is achieved by
substituting P ∗m into η = NR(1 − δ). We note again that
P ∗m is the solution to ξ∗ = 1− ε, since ξ∗ is a monotonically
decreasing function of Pm. This can be observed directly from
(28), which shows that for an arbitrary threshold Γ the missed
detection rate is a monotonically decreasing function of Pm.
As per (27), the false positive rate α is not a function of Pm.
We also note that R is a monotonically increasing function
of Pm. This can be confirmed by Alice’s expected transmit
power for DUTP over different realizations of P , given by

P t =
1

M

M∑
i=1

Pi =
Pm
2

(
1 +

1

M

)
, (32)

which monotonically increases with Pm.
We note that the missed detection rate for FTP given in

(12) is a special case of that for DUTP given in (28) with
M = 1 and Pm = P . Also, the channel coding rate for FTP
given in (4) is a special case of the expected channel coding
rate for DUTP given in (30) with M = 1 and Pm = P . As
such, FTP can be interpreted as a special case of DUTP with
M = 1 and Pm = P . Not surprisingly, the results for CUTP
can be obtained by letting M →∞ in DUTP, i.e., the missed
detection rate given in (22) can be obtained from (28) with
M → ∞ and the channel coding rate given in (23) can be
achieved from (30) with M →∞. Intuitively, ξ∗ achieved by
DUTP should increase with M since the system complexity
increases with M . This is due to the fact that M is not only
the number of transmit power levels that Alice has to support,
but also the number of codebooks shared between Alice and

ǫ
10

-3
10

-2
10

-1

N
P

∗

10
-2

10
-1

10
0

10
1

N = 100

N = 500

N = 2000

ξ∗ ≥ 1− ǫ

D(P0‖P1) ≤ 2ǫ2

Fig. 2. Maximum allowable total transmit power NP ∗ versus ε for different
values of N , where σ2

b = σ2
w = 0 dB.

Bob. In particular, Alice’s R should vary with her transmit
power in order to achieve the expected channel coding rate
R for a fixed decoding error probability δ as discussed in the
previous subsection. In addition, a larger M requires more
secrets shared between Alice and Bob, since the index of the
adopted transmit power level and the associated R should be
agreed between Alice and Bob, which should be kept secret
from Willie. As such, in the following section we numerically
examine the tradeoff between the achievable covertness and
the system complexity and shared secret size.

V. NUMERICAL RESULTS

In this section, we first provide numerical results on FTP
subject to ξ ≥ 1− ε to verify our analysis with D(P0‖P1) ≤
2ε2 as the covert communication constraint. We then examine
the covert performance of DUTP with FTP and CUTP as
the benchmarks, which leads to many useful insights on
the tradeoff between the achievable covertness and system
complexity issues, such as the shared secret size between Alice
and Bob.

A. Optimization of the Number of Channel Uses for FTP

In Fig. 2, we plot the maximum allowable total transmit
power NP ∗ over the entire block versus ε. In this figure and
the following figures, the curves for ξ ≥ 1− ε are achieved by
numerically evaluating the false positive and detection rates
as per (11) and (12), respectively. In this figure, we observe
that NP ∗ is larger with the constraint ξ ≥ 1 − ε than with
D(P0‖P1) ≤ 2ε2 as the constraint. This is due to the fact that
equality in (13) cannot be achieved, and hence the constraint
D(P0‖P1) ≤ 2ε2 is stricter than ξ ≥ 1 − ε. We also observe
that NP ∗ increases (hence η increases) as N increases, which
can be explained by Theorem 1. Finally, we observe that
NP ∗ decreases (hence η decreases) as ε decreases, which
demonstrates the tradeoff between the covert requirement and



8

N
200 400 600 800 1000

N
P

∗

5

10

15

20

25

30

(a)

ξ∗ ≥ 1− ǫ

D(P0‖P1) ≤ 2ǫ2

N
200 400 600 800 1000

η
∗
(b
it
)

5

10

15

20

25

(b)

ξ∗ ≥ 1− ǫ

D(P0‖P1) ≤ 2ǫ2

N
200 400 600 800 1000

P
∗
(d
B
)

-17

-16

-15

-14

-13

-12

(c)

ξ∗ ≥ 1− ǫ

D(P0‖P1) ≤ 2ǫ2

N
200 400 600 800 1000

η
∗
/N

(b
it
)

0.015

0.02

0.025

0.03

0.035

0.04

(d)

ξ∗ ≥ 1− ǫ

D(P0‖P1) ≤ 2ǫ2

Fig. 3. NP ∗, η, P ∗, and η/N versus N , where σ2
b = −5 dB, σ2

w = 0 dB,
δ = 0.15, and ε = 0.1.

the achievable η (e.g., a stricter covert requirement leads to a
smaller η).

In Fig. 3, we plot NP ∗, η∗, P ∗, and η/N versus N . As
expected, we first observe that NP ∗ and η∗ monotonically
increase as N increases in Fig. 3(a) and Fig. 3(b), respectively.
This confirms the correctness of adopting nP as an indicator
of η in Section III. Although NP ∗ increases, it is interesting
to observe that the maximum allowable transmit power P ∗

monotonically decreases as N increases in Fig. 3(c). This is
due to the fact that as the number of observations at Willie
increases, Alice has to reduce her transmit power for each
channel use in order to meet the same covert communication
constraint. In Fig. 3(d), we observe that η per channel use,
i.e., η∗/N , monotonically decreases as N increases. This is
mainly due to the fact that the maximum allowable transmit
power P ∗ monotonically decreases as N increases as shown in
Fig. 3(c). Although the channel coding rate slightly increases
as N increases for a fixed P ∗, this minor increase cannot
counteract the decrease caused by the decrease in P ∗. These
observations from Fig. 3 demonstrate that increasing N helps
Alice to allocate less transmit power to each channel use in
order to maintain the same level of covertness, but increases
the total transmit power over all the channel uses, which in
turn improves η subject to the same covert communication
constraint.

In Fig. 4, we plot η∗ subject to ξ∗ ≥ 1 − ε versus the
noise variance at Willie σ2

w. In this figure, we first observe
that η∗ increases as σ2

w increases since the uncertainty in
Willie’s received power increases with σ2

w. This is different
from the case with an infinite blocklength n → ∞, in which
the maximum covert rate is not a function of σ2

w. This is due
to the fact that with n → ∞ the AWGN power at Willie
is deterministic and thus increasing σ2

w does not decrease
Willie’s detection performance, since the change of σ2

w can
be counteracted by Willie varying the detection threshold.
As expected, we also observe that η∗ decreases as the noise
variance at Bob σ2

b increases. Finally, we observe that as ε

σ
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Fig. 4. Maximum η versus the noise variance at Willie σ2
w for different

values of σ2
b and ε, where N = 100 and δ = 0.20.
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Fig. 5. Willie’s optimal detection threshold Γ∗ versus the maximum transmit
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w , where N = 100.

increases slightly from 0.10 to 0.20, η∗ significantly increases.
This observation demonstrates that η∗ is very sensitive to ε.

B. Comparison among FTP, CUTP, and DUTP

In Fig. 5, we plot Willie’s optimal detection threshold Γ∗

versus the maximum transmit power Pm. In this figure, M =
1 and M → ∞ represent FTP and CUTP, respectively. The
curves represent theoretical results and the circles represent
numerical results. We first observe that Γ∗ decreases as M
increases, which is due to the fact that for a fixed Pm the
expected transmit power P t decreases with M . Furthermore,
we observe that Γ∗ is always greater than σ2

w. As such, we can
solve ∂ξ/∂Γ = 0 for CUTP and DUTP with Γ being greater
than σ2

w and less than Γ∗ for FTP (i.e., M = 1) as given in (8),
which can significantly facilitate achieving Γ∗ theoretically or
numerically.
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σ2
w = 5 dB and N = 100.

In Fig. 6, we plot the minimum total error ξ∗ and the
expected transmit power P t versus Pm for different values of
M . In Fig. 6 (a), we first observe that ξ∗ increases with M for
a fixed Pm, which demonstrates that adopting random transmit
power can indeed make it harder for Willie to detect Alice’s
transmission. This can be explained by Fig. 6 (b), which shows
that as M increases, P t decreases for a fixed Pm. Intuitively,
this is due to the fact that as M increases the uncertainty in
Alice’s transmit power increases and thus it becomes harder
for Willie to make correct decisions. However, we note that
for a predetermined ξ∗ we have different corresponding values
of Pm for different values of M in Fig. 6 (a), which lead to
different values of P t corresponding to different values of M
for a fixed ξ∗ in Fig. 6 (b). As such, in this figure it is hard
to examine whether a larger M leads to a larger P t (and thus
a larger η∗), an issue that will be further examined in the
following figure. Finally, we note that a larger ξ∗ corresponds
to a larger P t, which indicates that we could use P t as an
alternative metric of the detection performance at Willie when
ξ∗ is not achievable in a closed-form expression.

In Fig. 7, we plot η∗ subject to ξ∗ ≥ 1− ε versus different
values of M . In this figure, we first observe that CUTP can
significantly outperform FTP in terms of achieving a much
(approximately 5 times) higher η∗ than FTP. This indicates
that with a finite blocklength, adopting random transmit power
at Alice can indeed facilitate achieving covertness, which
is due to the fact that varying Alice’s transmit power can
boost the non-zero uncertainty (caused by AWGN due to the
finite blocklength) on the received power at Willie. Then, as
expected we also observe that for DUTP, η∗ increases as M
increases, while when M = 1 DUTP is identical to FTP and
as M → ∞ DUTP approaches CUTP. This demonstrates
that increasing M has a larger impact on increasing the
uncertainty at Willie compared with decreasing η∗ at Bob.
In addition to the number of transmit power levels that Alice
has to support, M also affects the size of the shared secrets
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Fig. 7. Maximum η versus the number of power levels at Alice (M ), where
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b = 0 dB, N = 100, ε = 0.05, and δ = 0.1.
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Fig. 8. The ratio τ versus ε, where σ2
b = 0 dB and δ = 0.1.

between Alice and Bob. Thus, in addition to the tradeoff
between the number of transmit power levels that Alice has to
support and the achieved covertness, Fig. 7 also demonstrates
the tradeoff between the shared secret size and the achieved
covertness. Surprisingly, we observe that η∗ increases approx-
imately logarithmically with M , which indicates that small
values of M can achieve most of the benefit of using variable
power. For example, we see that the value of η∗ achieved
by DUTP with M = 5 is within 90% of that for CUTP.
This demonstrates the practical usefulness of adopting random
transmit power to facilitate achieving covert communications.
In particular, we see that it provides a method for improving
the achievable covertness without significantly increasing the
system complexity or the shared secret size.

In Fig. 8, we plot the ratio τ , which is defined as the ratio
of η∗ achieved by CUTP to that achieved by FTP, versus ε.
In this figure, we first observe that τ monotonically decreases
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with ε. We note that ξ∗ ≥ 1−ε becomes stricter as ε decreases.
As such, this observation demonstrates that the benefit of
adopting random transmit power in covert communications
in terms of improving η∗ becomes more dominant as the
covert communication constraint becomes stricter. We also
observe that τ increases as N decreases. This demonstrates
the benefit of adopting random transmit power to improve the
performance of covert communications with a finite and small
blocklength; i.e., as the blocklength becomes smaller the im-
provement achieved by random transmit power becomes more
significant. Finally, we observe that τ significantly increases
as the noise power at Willie σ2

w decreases. Based on the above
three observations, we can conclude that the benefits of using
random transmit power in terms of increasing η∗ become more
dominant when η∗ achieved by FTP decreases (e.g., when N ,
ε, or σ2

w is smaller).

VI. CONCLUSION

This work examined the impact of a finite number of
channel uses n ≤ N on covert communications over AWGN
channels. We showed that the amount of information that can
be transmitted in covert communications is maximized when
all available channel uses are utilized, i.e., n∗ = N , although
Willie will have more observations to detect the covert com-
munications as n increases. Varying Alice’s transmit power
was proposed as a method for significantly enhancing the
performance of covert communications, especially when the
number η of information bits achieved by FTP is small.
Our examinations showed that the η achieved by DUTP
logarithmically increases with the number of transmit power
levels M , which demonstrates the practical usefulness of using
random transmit power to enhance covert communications.
For practical implementations, our results suggest that the data
transmission should extend across the maximum allowed time
interval in order to enhance the covertness of the commu-
nications. In addition, randomly varying the transmit power
can enhance covert communications when the allowed delay
is short or the covert requirement is extremely strict.

APPENDIX A
We present our proof of Theorem 1 in the following 5 steps.
Step 1: We note that η and D(P0‖P1) are both mono-

tonically increasing functions of P and n. As such, we can
conclude that the equality in the constraint (15b) is always
met in order to maximize η. Thus, we have D(P0‖P1) = 2ε2

and following (14) we have

n =
2ε2

f(γw)
, (33)

where

f(γw) ,
D(P0‖P1)

n
= ln (γw + 1)− γw

γw + 1
, (34)

and γw = P/σ2
w is the SNR at Willie.

Step 2: We note that f(0) = 0 and we derive the first
derivative of f(γw) with respect to γw as

∂f(γw)

∂γw
=

γw
(γw + 1)2

≥ 0, (35)

which leads to the fact that f(γw) is a monotonically increas-
ing function of γw. With the constraint D(P0‖P1) = 2ε2, n
is a monotonically decreasing function of f(γw) as per (33),
which indicates that n is a monotonically decreasing function
of γw and thus of P as well.

Step 3: We next prove that either n = 1 or n = N max-
imizes nγw. To this end, in the following we first show that
nγw initially decreases and then increases with n. Following
(33) and (34), we have

nγw =
2ε2

g(γw)
, (36)

where g(γw) is given by

g(γw) =
ln(1 + γw)

γw
− 1

1 + γw
. (37)

We then derive the first derivative of g(γw) with respect to γw
as

∂g(γw)

∂γw
=

h(γw)

γ2
w(1 + γw)2

, (38)

where

h(γw) = 2γ2
w + γw − (1 + γw)2 ln(1 + γw). (39)

We note that there are only two solutions to h(γw) = 0
for γw ≥ 0, including γw = 0 and γw = γ†w. We obtain
γ†w ≈ 2.1626 by numerically solving h(γw) = 0. We also
note that as γw → ∞ we have h(γw) → −∞. Then, we
can conclude that h(γw) ≥ 0 for γw < γ†w and h(γw) ≤ 0 for
γw ≥ γ†w. As such, noting γ2

w(1+γw)2 ≥ 0 and following (38),
we have ∂g(γw)/∂γw ≥ 0 for γw < γ†w and ∂g(γw)/∂γw ≤ 0
for γw ≥ γ†w. This indicates that g(γw) initially increases
and then decreases with γw. As per (36), we know that nγw
monotonically decreases with g(γw), which leads to the fact
that nγw first decreases and then increases as γw increases
(i.e., nγw has one minimum value but no maximum value).
We recall that n is a monotonically decreasing function of
γw under the constraint (33), which is proved following (35).
Therefore, we conclude that nγw first decreases and then
increases as n increases, and thus the maximum value of nγw
is achieved either at n = 1 or n = N .

Step 4: We next prove that n = N and not n = 1 maximizes
nγw. Substituting γ†w into (33), we have n† = 2ε2/f(γ†w). For
0 < ε < 0.4835, we have n† < 1 since f(γ†w) > 0.4675.
When n† < 1, nγw increases with n since n ≥ 1. As such,
for 0 < ε < 0.4835 the optimal value of n that maximizes
nγw is N (i.e., n∗ = N ). For 0.4835 ≤ ε ≤ 0.5, we have
n† < 2 again since f(γ†w) > 0.4675. We next confirm that
even for n† < 2 we still have n∗ = N . To this end, we only
have to confirm nγw for n = 2 is larger than that for n = 1.
When n = 1, following (33) we have f(γw) = 2ε2. The
maximum value of γw that guarantees f(γw) = 2ε2 (i.e., n =
1) is obtained when ε = 0.5 since f(γw) is a monotonically
increasing function of γw as proved by (35). We obtain this
maximum value by solving f(γw) = 0.5 as γn=1

w < 2.3145,
which leads to nγw < 2.3145 when n = 1. When n = 2,
following (33) we have f(γw) = ε2. The minimum value of γw
that guarantees f(γw) = ε2 (i.e., n = 2) is obtained when ε =
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0.4835. We obtain this minimum value by solving f(γw) =
(0.4835)2 as γn=2

w > 1.16, which shows that nγw > 2.32
when n = 2. As such, we have nγw < 2.3145 when n = 1
and nγw > 2.32 when n = 2, which means that nγw for
n = 2 is larger than nγw for n = 1. We recall that nγw
monotonically increases with n when n ≥ n†. Therefore, for
0.4835 ≤ ε ≤ 0.5 the optimal value of n that maximizes nγw
is N .

Step 5: So far, we have proved n∗ = N . Then, substituting
n∗ = N into (33), we obtain the fixed-point equation in (17).

We note that there may be other methods to achieve this
proof. For example, a geometrical argument based on the
dimension of the observation vector space under H0 may
provide an alternative approach, where one would have to
prove that, for a fixed total transmit power, the KL divergence
decreases with n. In our approach, we proved that, for a fixed
KL divergence, the maximum allowable total transmit power
increases with n. Since the KL divergence monotonically
increases with the total transmit power for a fixed value of
n, we can conclude that the alternative approach follows a
similar philosophy.

APPENDIX B
We note that CUTP does not affect the likelihood function

under H0 (i.e., P0). As such, (21) follows from (11) directly.
We now derive the missed detection rate β for CUTP. Follow-
ing (9) and (20), the likelihood function of T under H1 for
CUTP can be written as

f(T |H1) =
TN−1

Γ(N)

∫ Pm

0

(
N

x+ σ2
w

)N
e
− NT
x+σ2w fP (x)dx

=
TN−1

Γ(N)Pm

∫ Pm

0

(
N

x+ σ2
w

)N
e
− NT
x+σ2w dx

a
=
NNTN−1

Γ(N)Pm

∫ 1
σ2w

1
Pm+σ2w

yN−2e−NTydy

b
=

N

Γ(N)Pm

[
γ

(
N−1,

NT

σ2
w

)
−γ
(
N−1,

NT

Pm+σ2
w

)]
, (40)

where a
= is achieved by setting y = 1/x+σ2

w and b
= is achieved

with the aid of the following identity [32, Eq. (3.351)]:∫ u

0

xne−µxdx = µ−n−1γ(n+ 1, uµ). (41)

Then, following (40) for a fixed threshold Γ the missed
detection rate for the CUTP is given by

β = Pr(T < Γ|H1) =

∫ Γ

0

f(T |H1)dT

=
N

Γ(N)Pm

∫ Γ

0

[
γ

(
N−1,

Nx

σ2
w

)
−γ
(
N−1,

Nx

Pm+σ2
w

)]
dx

c
=

N

(N − 1)Pm

N−2∑
i=0

1

i!

[(
N

Pm + σ2
w

)i ∫ Γ

0

xie
− N
Pm+σ2w

x
dx

−
(
N

σ2
w

)i ∫ Γ

0

xie
− N
σ2w

x
dx

]
, (42)

where c
= is achieved with the aid of the following identity [32,

Eq. (8.353.6)]:

γ(n, x) = (n− 1)!

[
1− e−x

n−1∑
m=0

xm

m!

]
. (43)

We then solve the integrals in (42) as per (41) and obtain the
desired result in (22).

APPENDIX C

Following (20), we have the pdf of P/σ2
b as

f P

σ2
b

(x) =


σ2
b

Pm
, 0 < x ≤ Pm

σ2
b

0, x ≥ Pm
σ2
b

.

(44)

Then, as per (4) the expected channel coding rate achieved by
CUTP for a fixed δ is approximated by

R =

∫ Pm
σ2
b

0

[
log2(1+x)−

√
x(x+2)

N(x+1)2

Q−1(δ)

ln(2)

]
σ2
b

Pm
dx

=
σ2
b

Pm

∫ Pm
σ2
b

0

log2(1+x)dx

− Q−1(δ)σ2
b√

N ln(2)Pm

∫ Pm
σ2
b

0

√
x(x+ 2)

x+ 1
dx. (45)

We finally solve the integrals in (45) with the aid of the
following two identities∫ u

0

ln(x+ a)dx = (u+ a) ln(u+ a)− u− a ln(a), (46)∫ u

0

√
x(x+ 2)

x+ 1
dx =

√
u(u+ 2)− 2 tan−1

√
u

u+ 2
, (47)

which leads to the desired result in (23).
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