22 research outputs found
Investigation of checkpoint adaptation in human cancer cells treated with the genotoxic agent cisplatin
We investigated checkpoint adaptation in HT-29 colorectal adenocarcinoma cells treated with cisplatin. Cells that undergo checkpoint adaptation arrest at and then abrogate the G2/M checkpoint to enter mitosis with damaged DNA. We identified that cytotoxic amounts of cisplatin induce either checkpoint adaptation or apoptosis in a concentration dependent manner. We also found that some cisplatin treated cells can survive checkpoint adaptation. These survival cells may contain rearranged genomes, because they entered mitosis with damaged DNA. Additionally, cisplatin treated cells can die when they are induced to undergo checkpoint adaptation but entry into mitosis is inhibited. This might prevent cells surviving treatment with rearranged genomes and could improve the efficacy of genotoxic anti-cancer drugs. Finally, we show that the response following checkpoint adaptation is not identical after treatment with two different genotoxic agents; both HT-29 and M059K glioma cells treated with camptothecin spend longer in mitosis than cells treated with cisplatin
Re-evaluating the Quoit Brooch Style: Economic and Cultural Transformations in the 5th Century ad, with an Updated Catalogue of Known Quoit Brooch Style Artefacts
Quoit Brooch Style material, produced from the early 5th century onwards, has previously been considered mostly from a stylistic point of view, leaving much scope for further investigation. In addition, the known corpus of material has been much expanded through newly excavated and metal-detected finds. In this article, I bring together the known extant material for the first time, and document important evidence relating to contextual dating, gender associations, manufacture (including new compositional analysis of c 75 objects), repair, and reuse. The article questions previous interpretations of Quoit Brooch Style material relating to Germanic mercenaries and/or post-Romano-British political entities. It interprets the earliest material as part of wider trends elsewhere, in Britain and in Continental northwestern Europe, for the production of material imitating late Roman symbols of power. It presents new evidence for connectivity with Continental Europe via the western Channel route in the 5th century. A detailed investigation of individual artefacts shows that many Quoit Brooch Style objects were reused, sometimes being subjected to extensive repair and modification. This provides new insights into the 5th century metal economy, for instance, acute problems in the availability of new metal objects in southeastern Britain in the middle years of the 5th century. Compositional analysis contributes further to our understanding of metal supply in the 5th century and relationships with the post-Roman West. Insights are provided into wider cultural transformations in the 5th century and the gradual loss of value that occurred for Roman-style objects
Phenotypic Characterization of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension.
BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation
Recommended from our members
Phenotypic Characterization of <i>EIF2AK4</i> Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension
Background:
Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (
BMPR2
) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (
EIF2AK4
) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH.
Methods:
Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource–Rare Diseases study. Heterozygous variants in
BMPR2
and biallelic
EIF2AK4
variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and
sorting intolerant from tolerant
predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured.
Results:
Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in
BMPR2
were identified in 130 patients (14.8%). Biallelic mutations in
EIF2AK4
were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic
EIF2AK4
mutations. These patients had a reduced transfer coefficient for carbon monoxide (K
co
; 33% [interquartile range, 30%–35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23–38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without
EIF2AK4
mutations. However, radiological assessment alone could not accurately identify biallelic
EIF2AK4
mutation carriers. Patients with PAH with biallelic
EIF2AK4
mutations had a shorter survival.
Conclusions:
Biallelic
EIF2AK4
mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low K
co
and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation.
</jats:sec
Examining empathy deficits across familial forms of frontotemporal dementia within the GENFI cohort
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).Background: Reduced empathy is a common symptom in frontotemporal dementia (FTD). Although empathy deficits have been extensively researched in sporadic cases, few studies have explored the differences in familial forms of FTD.
Methods: Empathy was examined using a modified version of the Interpersonal Reactivity Index (mIRI) in 676 participants from the Genetic FTD Initiative: 216 mutation-negative controls, 192 C9orf72 expansion carriers, 193 GRN mutation carriers and 75 MAPT mutation carriers. Using global scores from the CDR® plus NACC FTLD, mutation carriers were divided into three groups, asymptomatic (0), very mildly symptomatic/prodromal (.5), or fully symptomatic (1 or more). The mIRI Total score, as well as the subscores of Empathic Concern (EC) and Perspective Taking (PT) were assessed. Linear regression models with bootstrapping were used to assess empathy ratings across genetic groups, as well as across phenotypes in the symptomatic carriers. Neural correlates of empathy deficits were examined using a voxel-based morphometry (VBM) analysis.
Results: All fully symptomatic groups scored lower on the mIRI Total, EC, and PT when compared to controls and their asymptomatic or prodromal counterparts (all p < .001). Prodromal C9orf72 expansion carriers also scored significantly lower than controls on the mIRI Total score (p = .046). In the phenotype analysis, all groups (behavioural variant FTD, primary progressive aphasia and FTD with amyotrophic lateral sclerosis) scored significantly lower than controls (all p < .007). VBM revealed an overlapping neural correlate of the mIRI Total score across genetic groups in the orbitofrontal lobe but with additional involvement in the temporal lobe, insula and basal ganglia in both the GRN and MAPT groups, and uniquely more posterior regions such as the parietal lobe and thalamus in the GRN group, and medial temporal structures in the MAPT group.
Conclusions: Significant empathy deficits present in genetic FTD, particularly in symptomatic individuals and those with a bvFTD phenotype, while prodromal deficits are only seen using the mIRI in C9orf72 expansion carriers.This work was supported by the NIHR UCL/H Biomedical Research Centre, the Leonard Wolfson Experimental Neurology Centre (LWENC) Clinical Research Facility, and the UK Dementia Research Institute, which receives its funding from UK DRI Ltd, funded by the UK Medical Research Council, Alzheimer's Society and Alzheimer's Research UK. JDR is supported by an MRC Clinician Scientist Fellowship (MR/M008525/1) and has received funding from the NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH). This work was also supported by the MRC UK GENFI grant (MR/M023664/1), the Bluefield Project and the JPND GENFI-PROX grant (2019-02248). Several authors of this publication are members of the European Reference Network for Rare Neurological Diseases - Project ID No 739510. RC/CG are supported by a Frontotemporal Dementia Research Studentships in Memory of David Blechner funded through The National Brain Appeal (RCN 290173). MB is supported by a Fellowship award from the Alzheimer's Society, UK (AS-JF-19a-004-517). MB's work is also supported by the UK Dementia Research Institute which receives its funding from DRI Ltd, funded by the UK Medical Research Council, Alzheimer's Society and Alzheimer's Research UK. JCVS was supported by the Dioraphte Foundation grant 09-02-03-00, the Association for Frontotemporal Dementias Research Grant 2009, The Netherlands Organisation for Scientific Research grant HCMI 056-13-018, ZonMw Memorabel (Deltaplan Dementie, project number 733 051 042), Alzheimer Nederland and the Bluefield project. FM received funding from the Tau Consortium and the Center for Networked Biomedical Research on Neurodegenerative Disease (CIBERNED). RS-V is supported by an Alzheimer’s Research UK Clinical Research Training Fellowship (ARUK-CRF2017B-2), and has received funding from Fundació Marató de TV3, Spain (grant no. 20143810). CG received funding from JPND-Prefrontals VR Dnr 529-2014-7504, VR 2015-02926 and 2018-02754, the Swedish FTD Inititative-Schörling Foundation, Alzheimer Foundation, Brain Foundation and Stockholm County Council ALF. MM has received funding from a Canadian Institute of Health Research operating grant and the Weston Brain Institute and Ontario Brain Institute. JBR has received funding from the Wellcome Trust (103838) and is supported by the Cambridge University Centre for Frontotemporal Dementia, the Medical Research Council (SUAG/051 G101400) and the National Institute for Health Research Cambridge Biomedical Research Centre (BRC-1215-20014). EF has received funding from a CIHR grant #327387. DG received support from the EU Joint Programme – Neurodegenerative Disease Research and the Italian Ministry of Health (PreFrontALS) grant 733051042. RV has received funding from the Mady Browaeys Fund for Research into Frontotemporal Dementia. MO has received funding from BMBF (FTLDc).info:eu-repo/semantics/publishedVersio
Safety, immunogenicity, and efficacy of a COVID-19 vaccine (NVX-CoV2373) co-administered with seasonal influenza vaccines: an exploratory substudy of a randomised, observer-blinded, placebo-controlled, phase 3 trial
Background: Safety and immunogenicity of COVID-19 vaccines when co-administered with influenza vaccines have not yet been reported.
Methods: A sub-study on influenza vaccine co-administration was conducted as part of the phase 3 randomised trial of NVX-CoV2373’s safety and efficacy; ~400 participants meeting main study entry criteria, with no contraindications to influenza vaccination, were enroled. After randomisation to receive NVX-CoV2373 or placebo, sub-study participants received an open-label influenza vaccine at the same time as the first dose of NVX-CoV2373. Reactogenicity was evaluated for 7 days post-vaccination plus monitoring for unsolicited adverse events (AEs), medically-attended AEs (MAAEs), and serious AEs (SAEs). Vaccine efficacy against COVID-19 was assessed.
Findings: Sub-study participants were younger (median age 39; 6.7 % ≥65 years), more racially diverse, and had fewer comorbid conditions than main study participants. Reactogenicity events more common in co-administration group included tenderness (70.1% vs 57.6%) or pain (39.7% vs 29.3%) at injection site, fatigue (27.7% vs 19.4%), and muscle pain (28.3% vs 21.4%). Rates of unsolicited AEs, MAAEs, and SAEs were low and balanced between the two groups. Co-administration resulted in no change to influenza vaccine immune response, while a reduction in antibody responses to the NVX-CoV2373 vaccine was noted. Vaccine efficacy against COVID-19 was 87.5% (95% CI: -0.2, 98.4) in those 18-<65 years in the sub-study while efficacy in the main study was 89.8% (95% CI: 79.7, 95.5).Â
Interpretation: This is the first study to demonstrate safety, immunogenicity, and efficacy of a COVID-19 vaccine when co-administered with influenza vaccines
Plasma Neurofilament Light for Prediction of Disease Progression in Familial Frontotemporal Lobar Degeneration
Objective: We tested the hypothesis that plasma neurofilament light chain (NfL) identifies asymptomatic carriers of familial frontotemporal lobar degeneration (FTLD)-causing mutations at risk of disease progression.
Methods: Baseline plasma NfL concentrations were measured with single-molecule array in original (n = 277) and validation (n = 297) cohorts. C9orf72, GRN, and MAPT mutation carriers and noncarriers from the same families were classified by disease severity (asymptomatic, prodromal, and full phenotype) using the CDR Dementia Staging Instrument plus behavior and language domains from the National Alzheimer's Disease Coordinating Center FTLD module (CDR+NACC-FTLD). Linear mixed-effect models related NfL to clinical variables.
Results: In both cohorts, baseline NfL was higher in asymptomatic mutation carriers who showed phenoconversion or disease progression compared to nonprogressors (original: 11.4 ± 7 pg/mL vs 6.7 ± 5 pg/mL, p = 0.002; validation: 14.1 ± 12 pg/mL vs 8.7 ± 6 pg/mL, p = 0.035). Plasma NfL discriminated symptomatic from asymptomatic mutation carriers or those with prodromal disease (original cutoff: 13.6 pg/mL, 87.5% sensitivity, 82.7% specificity; validation cutoff: 19.8 pg/mL, 87.4% sensitivity, 84.3% specificity). Higher baseline NfL correlated with worse longitudinal CDR+NACC-FTLD sum of boxes scores, neuropsychological function, and atrophy, regardless of genotype or disease severity, including asymptomatic mutation carriers.
Conclusions: Plasma NfL identifies asymptomatic carriers of FTLD-causing mutations at short-term risk of disease progression and is a potential tool to select participants for prevention clinical trials.
Trial registration information: ClinicalTrials.gov Identifier: NCT02372773 and NCT02365922.
Classification of evidence: This study provides Class I evidence that in carriers of FTLD-causing mutations, elevation of plasma NfL predicts short-term risk of clinical progression
Natural product extracts of the Canadian prairie plant, <i>Thermopsis rhombifolia,</i> have anti-cancer activity in phenotypic cell-based assays
<div><p>Many plant species within the terrestrial ecological zones of Canada have not yet been investigated for anti-cancer activity. We examined the scientific literature describing the endemic flora from the prairie ecological zone and selected the species, <i>Thermopsis rhombifolia</i>, locally known as the buffalo bean, for investigation of its anti-cancer potential. We tested it in cell-based assays using phenotypic screens that feature some of the hallmarks of cancer. An ethanolic extract prepared from <i>T. rhombifolia</i> was cytotoxic to HT-29 (colon) and SH-SY5Y (brain) cancer cell lines, and showed little cytotoxicity to a normal human cell line (WI-38). In phenotypic assays, we identified activities in the extracts that target cell death, cell cycle and cell adhesion. These data highlight the anti-cancer potential of previously untested plants found in northern ecological zones and the feasibility of using pertinent phenotypic assays to examine the anti-cancer potential of natural product extracts.</p></div