1,554 research outputs found

    Manual for Promoting Agri-environment Measures in Natura 2000 sites in Bulgaria

    Get PDF

    Nonempirical Density Functionals Investigated for Jellium: Spin-Polarized Surfaces, Spherical Clusters, and Bulk Linear Response

    Get PDF
    Earlier tests show that the Tao-Perdew-Staroverov-Scuseria (TPSS) nonempirical meta-generalized gradient approximation (meta-GGA) for the exchange-correlation energy yields more accurate surface energies than the local spin density (LSD) approximation for spin-unpolarized jellium. In this study, work functions and surface energies of a jellium metal in the presence of ``internal'' and external magnetic fields are calculated with LSD, Perdew-Burke-Ernzerhof (PBE) GGA, and TPSS meta-GGA and its predecessor, the nearly nonempirical Perdew-Kurth-Zupan-Blaha (PKZB) meta-GGA, using self-consistent LSD orbitals and densities. The results show that: (i) For normal bulk densities, the surface correlation energy is the same in TPSS as in PBE, as it should be since TPSS strives to represent a self-correlation correction to PBE; (ii) Normal surface density profiles can be scaled uniformly to the low-density or strong-interaction limit, and TPSS provides an estimate for that limit that is consistent with (but probably more accurate than) other estimates; (iii) For both normal and low densities, TPSS provides the same description of surface magnetism as PBE, suggesting that these approximations may be generally equivalent for magnetism. The energies of jellium spheres with up to 106 electrons are calculated using density functionals and compared to those obtained with Diffusion Quantum Monte Carlo data, including our estimate for the fixed-node correction. Finally we calculate the linear response of bulk jellium using these density functionals, and find that not only LSD but also PBE GGA and TPSS meta-GGA yield a linear-response in good agreement with that of the Quantum Monte Carlo method, for wavevectors of the perturbing external potential up to twice the Fermi wavevector.Comment: 14 pages, 9 figure

    Robust zero-energy modes in an electronic higher-order topological insulator: the dimerized Kagome lattice

    Full text link
    Quantum simulators are an essential tool for understanding complex quantum materials. Platforms based on ultracold atoms in optical lattices and photonic devices led the field so far, but electronic quantum simulators are proving to be equally relevant. Simulating topological states of matter is one of the holy grails in the field. Here, we experimentally realize a higher-order electronic topological insulator (HOTI). Specifically, we create a dimerized Kagome lattice by manipulating carbon-monoxide (CO) molecules on a Cu(111) surface using a scanning tunneling microscope (STM). We engineer alternating weak and strong bonds to show that a topological state emerges at the corner of the non-trivial configuration, while it is absent in the trivial one. Contrarily to conventional topological insulators (TIs), the topological state has two dimensions less than the bulk, denoting a HOTI. The corner mode is protected by a generalized chiral symmetry, which leads to a particular robustness against perturbations. Our versatile approach to quantum simulation with artificial lattices holds promises of revealing unexpected quantum phases of matter

    18. A. Longinelli, E. Selmo

    Get PDF
    The collared lemming in the high-Arctic tundra in Greenland is preyed upon by four species of predators that show marked differences in the numbers of lemmings each consumes and in the dependence of their dynamics on lemming density. A predatorprey model based on the field-estimated predator responses robustly predicts 4-year periodicity in lemming dynamics, in agreement with long-term empirical data. There is no indication in the field that food or space limits lemming population growth, nor is there need in the model to consider those factors. The cyclic dynamics are driven by a 1-year delay in the numerical response of the stoat and stabilized by strongly density-dependent predation by the arctic fox, the snowy owl, and the long-tailed skua

    Parton Distributions for the Octet and Decuplet Baryons

    Get PDF
    We calculate the parton distributions for both polarized and unpolarized octet and decuplet baryons, using the MIT bag, dressed by mesons. We show that the hyperfine interaction responsible for the ΔN\Delta - N and Σ0Λ\Sigma^0 - \Lambda splittings leads to large deviations from SU(3) and SU(6) predictions. For the Λ\Lambda we find significant polarized, non-strange parton distributions which lead to a sizable Λ\Lambda polarization in polarized, semi-inclusive epep scattering. We also discuss the flavour symmetry violation arising from the meson-cloud associated with the chiral structure of baryons.Comment: 29 pages, 15 figure

    Therapeutic and educational objectives in robot assisted play for children with autism

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ROMAN.2009.5326251This article is a methodological paper that describes the therapeutic and educational objectives that were identified during the design process of a robot aimed at robot assisted play. The work described in this paper is part of the IROMEC project (Interactive Robotic Social Mediators as Companions) that recognizes the important role of play in child development and targets children who are prevented from or inhibited in playing. The project investigates the role of an interactive, autonomous robotic toy in therapy and education for children with special needs. This paper specifically addresses the therapeutic and educational objectives related to children with autism. In recent years, robots have already been used to teach basic social interaction skills to children with autism. The added value of the IROMEC robot is that play scenarios have been developed taking children's specific strengths and needs into consideration and covering a wide range of objectives in children's development areas (sensory, communicational and interaction, motor, cognitive and social and emotional). The paper describes children's developmental areas and illustrates how different experiences and interactions with the IROMEC robot are designed to target objectives in these areas.Final Published versio

    Fungal pathogens of Proteaceae

    Get PDF
    Species of Leucadendron, Leucospermum and Protea (Proteaceae) are in high demand for the international floriculture market due to their brightly coloured and textured flowers or bracts. Fungal pathogens, however, create a serious problem in cultivating flawless blooms. The aim of the present study was to characterise several of these pathogens using morphology, culture characteristics, and DNA sequence data of the rRNA-ITS and LSU genes. In some cases additional genes such as TEF 1-α and CHS were also sequenced. Based on the results of this study, several novel species and genera are described. Brunneosphaerella leaf blight is shown to be caused by three species, namely B. jonkershoekensis on Protea repens, B. nitidae sp. nov. on Protea nitida and B. protearum on a wide host range of Protea spp. (South Africa). Coniothyrium-like species associated with Coniothyrium leaf spot are allocated to other genera, namely Curreya grandicipis on Protea grandiceps, and Microsphaeropsis proteae on P. nitida (South Africa). Diaporthe leucospermi is described on Leucospermum sp. (Australia), and Diplodina microsperma newly reported on Protea sp. (New Zealand). Pyrenophora blight is caused by a novel species, Pyrenophora leucospermi, and not Drechslera biseptata or D. dematoidea as previously reported. Fusicladium proteae is described on Protea sp. (South Africa), Pestalotiopsis protearum on Leucospermum cuneiforme (Zimbabwe), Ramularia vizellae and R. stellenboschensis on Protea spp. (South Africa), and Teratosphaeria capensis on Protea spp. (Portugal, South Africa). Aureobasidium leaf spot is shown to be caused by two species, namely A. proteae comb. nov. on Protea spp. (South Africa), and A. leucospermi sp. nov. on Leucospermum spp. (Indonesia, Portugal, South Africa). Novel genera and species elucidated in this study include Gordonomyces mucovaginatus and Pseudopassalora gouriqua (hyphomycetes), and Xenoconiothyrium catenata (coelomycete), all on Protea spp. (South Africa)
    corecore