Quantum simulators are an essential tool for understanding complex quantum
materials. Platforms based on ultracold atoms in optical lattices and photonic
devices led the field so far, but electronic quantum simulators are proving to
be equally relevant. Simulating topological states of matter is one of the holy
grails in the field. Here, we experimentally realize a higher-order electronic
topological insulator (HOTI). Specifically, we create a dimerized Kagome
lattice by manipulating carbon-monoxide (CO) molecules on a Cu(111) surface
using a scanning tunneling microscope (STM). We engineer alternating weak and
strong bonds to show that a topological state emerges at the corner of the
non-trivial configuration, while it is absent in the trivial one. Contrarily to
conventional topological insulators (TIs), the topological state has two
dimensions less than the bulk, denoting a HOTI. The corner mode is protected by
a generalized chiral symmetry, which leads to a particular robustness against
perturbations. Our versatile approach to quantum simulation with artificial
lattices holds promises of revealing unexpected quantum phases of matter