118 research outputs found

    The Plessey velocimeter

    No full text

    Parametric uncertainty in complex environmental models: a cheap emulation approach for models with high-dimensional output

    Get PDF
    In order to understand underlying processes governing environmental and physical processes, and predict future outcomes, a complex computer model is frequently required to simulate these dynamics. However there is inevitably uncertainty related to the exact parametric form or the values of such parameters to be used when developing these simulators, with \emph{ranges} of plausible values prevalent in the literature. Systematic errors introduced by failing to account for these uncertainties have the potential to have a large effect on resulting estimates in unknown quantities of interest. Due to the complexity of these types of models, it is often unfeasible to run large numbers of training runs that are usually required for full statistical emulators of the environmental processes. We therefore present a method for accounting for uncertainties in complex environmental simulators without the need for very large numbers of training runs and illustrate the method through an application to the Met Office's atmospheric transport model NAME. We conclude that there are two principle parameters that are linked with variability in NAME outputs, namely the free tropospheric turbulence parameter and particle release height. Our results suggest the former should be significantly larger than is currently implemented as a default in NAME, whilst changes in the latter most likely stem from inconsistencies between the model specified ground height at the observation locations and the true height at this location. Estimated discrepancies from independent data are consistent with the discrepancy between modelled and true ground height

    Measurements within the Pacific-Indian oceans throughflow region

    Get PDF
    Two hydrographic ... and trichlorofluoromethane (F-11) sections were carried out between the Australian continental shelf and Indonesia, in August 1989, on board the R.V. "Marion Dufresne". The sections lie in the easternmost part of the Indian Ocean where the throughflow between the Pacific Ocean and the Indian Ocean emerges. They allow us to describe the features of the water-property and circulation fields of the throughflow at its entrance in the Indian Ocean. Between the Australian continental shelf and Bali, the Subtropical and Central waters are separated from the waters of the Indonesian seas by a sharp hydrological front, located around 13°30S, below the thermocline down to 700 m. Near the coast of Bali, upwelling occurs in the near-surface layer under the effect of the Southeast monsoon; at depth, between 300 m to more than 800 m, a water mass of Northern Indian Ocean origin was present. (D'après résumé d'auteur

    The LHCb upgrade I

    Get PDF
    The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software

    Study of the lineshape of the chi(c1) (3872) state

    Get PDF
    A study of the lineshape of the chi(c1) (3872) state is made using a data sample corresponding to an integrated luminosity of 3 fb(-1) collected in pp collisions at center-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate chi(c1)(3872) and psi(2S) mesons from b-hadron decays are selected in the J/psi pi(+)pi(-) decay mode. Describing the lineshape with a Breit-Wigner function, the mass splitting between the chi(c1 )(3872) and psi(2S) states, Delta m, and the width of the chi(c1 )(3872) state, Gamma(Bw), are determined to be (Delta m=185.598 +/- 0.067 +/- 0.068 Mev,)(Gamma BW=1.39 +/- 0.24 +/- 0.10 Mev,) where the first uncertainty is statistical and the second systematic. Using a Flatte-inspired model, the mode and full width at half maximum of the lineshape are determined to be (mode=3871.69+0.00+0.05 MeV.)(FWHM=0.22-0.04+0.13+0.07+0.11-0.06-0.13 MeV, ) An investigation of the analytic structure of the Flatte amplitude reveals a pole structure, which is compatible with a quasibound D-0(D) over bar*(0) state but a quasivirtual state is still allowed at the level of 2 standard deviations
    • …
    corecore