12,960 research outputs found

    High-Calcium Limestone Deposits of Cumberland Valley, Pennsylvania

    Get PDF
    Author Institution: University of Minnesota, Minneapolis, MinnesotaHigh-calcium limestones occur in the upper part of the New Market Formation, of Lower Middle Ordovician age, in Franklin and Cumberland Counties, Pennsylvania. The high-calcium facies of the New Market Formation is represented by sublithographic limestone or vaughanite, which probably formed in quiet water, low-energy environments such as intershoal lagoons, or in protected bays similar to the present-day Florida Bay environment. Rapid facies changes are characteristic of the strata. The better grade of stone lies in the upper 100 to 125 feet of the New Market Formation and averages 95-97% calcium carbonate. Silica and magnesia are about equal in amount as impurities. One high-calcium belt extends from the Maryland state line through Chambersburg and Newville to beyond Carlisle. The strata in this belt are structurally complex, which requires careful field study and core-drilling prior to exploitation. Stone suitable for blast-furnace flux is present in relatively large amounts, but stone for open-hearth use or portland cement requires more selective quarrying

    An effective elastic thickness map of Australia from wavelet transforms of gravity and topography using Forsyth's method

    Get PDF
    We have developed a wavelet version of Forsyth's coherence method for estimating the effective elasticthickness (T e) of the lithosphere from gravity and topography. We have previously shown that the 'fan' wavelet is particularly well suited to making localised coherence estimates and here we progress the method by showing how the coherence can be modelled by using the wavelet transforms of gravity and topography to infer the initial loads that flex the plate. The effectiveness of the method is demonstrated on synthetic data from a model having a rectangular area of large T e embedded in a uniform low T e surrounding, and a load ratio that increases with wave number. The results for the Australia region show a 'core' of high T e under north and central Australia, with much lower values to the east and also, unexpectedly, under the western parts of the Yilgarn and Pilbara cratons

    Optimal squeezing, pure states, and amplification of squeezing in resonance fluorescence

    Get PDF
    It is shown that 100% squeezed output can be produced in the resonance fluorescence from a coherently driven two-level atom interacting with a squeezed vacuum. This is only possible for N=1/8N=1/8 squeezed input, and is associated with a pure atomic state, i.e., a completely polarized state. The quadrature for which optimal squeezing occurs depends on the squeezing phase Φ,\Phi , the Rabi frequency Ω,\Omega , and the atomic detuning Δ\Delta . Pure states are described for arbitrary Φ,\Phi , not just Φ=0\Phi =0 or π\pi as in previous work. For small values of N,N, there may be a greater degree of squeezing in the output field than the input - i.e., we have squeezing amplification.Comment: 6 pages & 7 figures, Submitted to Phys. Rev.

    Time evolution of the Rabi Hamiltonian from the unexcited vacuum

    Full text link
    The Rabi Hamiltonian describes a single mode of electromagnetic radiation interacting with a two-level atom. Using the coupled cluster method, we investigate the time evolution of this system from an initially empty field mode and an unexcited atom. We give results for the atomic inversion and field occupation, and find that the virtual processes cause the field to be squeezed. No anti-bunching occurs.Comment: 25 pages, 8 figures, RevTe

    Primary and secondary eclipse spectroscopy with JWST: exploring the exoplanet parameter space

    Get PDF
    Eclipse exoplanet spectroscopy has yielded detection of H_2O, CH_4, CO_2 and CO in the atmosphere of hot jupiters and neptunes. About 40 large terrestrial planets are announced or confirmed, two of which are transiting, and another deemed habitable. Hence the potential for eclipse spectroscopy of terrestrial planets with James Webb Space Telescope (JWST) has become an active field of study. We explore the parameter space (type of stars, planet orbital periods and types, and instruments/wavelengths) in terms of the signal-to-noise ratio (S/N) achievable on the detection of spectroscopic features. We use analytic formula and model data for both the astrophysical scene and the instrument, to plot S/N contour maps, while indicating how the S/N scales with the fixed parameters. We systematically compare stellar photon noise-only figures with ones including detailed instrumental and zodiacal noises. Likelihood of occurring targets is based both on model and catalog star population of the solar neighborhood. The 9.6 micron ozone band is detectable (S/N = 3) with JWST, for a warm super-earth 6.7 pc away, using ~2% of the 5-year nominal mission time (summing observations, M4V and lighter host star for primary eclipses, M5V for secondary). If every star up to this mass limit and distance were to host a habitable planet, there should be statistically ~1 eclipsing case. Investigation of systematic noises in the co-addition of 5 years worth-, tens of days separated-, hours-long observations is critical, complemented by dedicated characterisation of the instruments, currently in integration phase. The census of nearby transiting habitable planets must be complete before the beginning of science operations.Comment: Accepted for publication in A&A, 16 pages, 19 figure

    Quantum interference in optical fields and atomic radiation

    Full text link
    We discuss the connection between quantum interference effects in optical beams and radiation fields emitted from atomic systems. We illustrate this connection by a study of the first- and second-order correlation functions of optical fields and atomic dipole moments. We explore the role of correlations between the emitting systems and present examples of practical methods to implement two systems with non-orthogonal dipole moments. We also derive general conditions for quantum interference in a two-atom system and for a control of spontaneous emission. The relation between population trapping and dark states is also discussed. Moreover, we present quantum dressed-atom models of cancellation of spontaneous emission, amplification on dark transitions, fluorescence quenching and coherent population trapping.Comment: To be published in Journal of Modern Optics Special Issue on Quantum Interferenc

    A depression before a bump in the highest energy cosmic ray spectrum

    Get PDF
    We re-examine the interaction of ultra high energy nuclei with the microwave background radiation. We find that the giant dipole resonance leaves a new signature in the differential energy spectrum of iron sources located around 3 Mpc: A depression before the bump which is followed by the expected cutoff.Comment: revisited version, 5 pages RevTex, 5 figure

    The Implications of M Dwarf Flares on the Detection and Characterization of Exoplanets at Infrared Wavelengths

    Full text link
    We present the results of an observational campaign which obtained high time cadence, high precision, simultaneous optical and IR photometric observations of three M dwarf flare stars for 47 hours. The campaign was designed to characterize the behavior of energetic flare events, which routinely occur on M dwarfs, at IR wavelengths to milli-magnitude precision, and quantify to what extent such events might influence current and future efforts to detect and characterize extrasolar planets surrounding these stars. We detected and characterized four highly energetic optical flares having U-band total energies of ~7.8x10^30 to ~1.3x10^32 ergs, and found no corresponding response in the J, H, or Ks bandpasses at the precision of our data. For active dM3e stars, we find that a ~1.3x10^32 erg U-band flare (delta Umax ~1.5 mag) will induce <8.3 (J), <8.5 (H), and <11.7 (Ks) milli-mags of a response. A flare of this energy or greater should occur less than once per 18 hours. For active dM4.5e stars, we find that a ~5.1x10^31 erg U-band flare (delta Umax ~1.6 mag) will induce <7.8 (J), <8.8 (H), and <5.1 (Ks) milli-mags of a response. A flare of this energy or greater should occur less than once per 10 hours. No evidence of stellar variability not associated with discrete flare events was observed at the level of ~3.9 milli-mags over 1 hour time-scales and at the level of ~5.6 milli-mags over 7.5 hour time-scales. We therefore demonstrate that most M dwarf stellar activity and flares will not influence IR detection and characterization studies of M dwarf exoplanets above the level of ~5-11 milli-mags, depending on the filter and spectral type. We speculate that the most energetic megaflares on M dwarfs, which occur at rates of once per month, are likely to be easily detected in IR observations with sensitivity of tens of milli-mags.Comment: Accepted in Astronomical Journal, 17 pages, 6 figure

    Evidence of many-body localization in 2D from quantum Monte Carlo simulation

    Full text link
    We use the stochastic series expansion quantum Monte Carlo method, together with the eigenstate-to-Hamiltonian mapping approach, to map the localized ground states of the disordered two-dimensional Heisenberg model, to excited states of a target Hamiltonian. The localized nature of the ground state is established by studying the spin stiffness, local entanglement entropy, and local magnetization. This construction allows us to define many body localized states in an energy resolved phase diagram thereby providing concrete numerical evidence for the existence of a many-body localized phase in two dimensions.Comment: 8 pages, 6 figure

    Strong Water Absorption in the Dayside Emission Spectrum of the Planet HD 189733b

    Full text link
    Recent observations of the extrasolar planet HD 189733b did not reveal the presence of water in the emission spectrum of the planet. Yet models of such 'Hot Jupiter' planets predict an abundance of atmospheric water vapour. Validating and constraining these models is crucial for understanding the physics and chemistry of planetary atmospheres in extreme environments. Indications of the presence of water in the atmosphere of HD 189733b have recently been found in transmission spectra, where the planet's atmosphere selectively absorbs the light of the parent star, and in broadband photometry. Here we report on the detection of strong water absorption in a high signal-to-noise, mid-infrared emission spectrum of the planet itself. We find both a strong downturn in the flux ratio below 10 microns and discrete spectral features that are characteristic of strong absorption by water vapour. The differences between these and previous observations are significant and admit the possibility that predicted planetary-scale dynamical weather structures might alter the emission spectrum over time. Models that match the observed spectrum and the broadband photometry suggest that heat distribution from the dayside to the night side is weak. Reconciling this with the high night side temperature will require a better understanding of atmospheric circulation or possible additional energy sources.Comment: 11 pages, 1 figure, published in Natur
    corecore