800 research outputs found

    Testing the Toxicofera: comparative reptile transcriptomics casts doubt on the single, early evolution of the reptile venom system

    Get PDF
    Background The identification of apparently conserved gene complements in the venom and salivary glands of a diverse set of reptiles led to the development of the Toxicofera hypothesis – the idea that there was a single, early evolution of the venom system in reptiles. However, this hypothesis is based largely on relatively small scale EST-based studies of only venom or salivary glands and toxic effects have been assigned to only some of these putative Toxcoferan toxins in some species. We set out to investigate the distribution of these putative venom toxin transcripts in order to investigate to what extent conservation of gene complements may reflect a bias in previous sampling efforts. Results We have carried out the first large-scale test of the Toxicofera hypothesis and found it lacking in a number of regards. Our quantitative transcriptomic analyses of venom and salivary glands and other body tissues in five species of reptile, together with the use of available RNA-Seq datasets for additional species shows that the majority of genes used to support the establishment and expansion of the Toxicofera are in fact expressed in multiple body tissues and most likely represent general maintenance or “housekeeping” genes. The apparent conservation of gene complements across the Toxicofera therefore reflects an artefact of incomplete tissue sampling. In other cases, the identification of a non-toxic paralog of a gene encoding a true venom toxin has led to confusion about the phylogenetic distribution of that venom component. Conclusions Venom has evolved multiple times in reptiles. In addition, the misunderstanding regarding what constitutes a toxic venom component, together with the misidentification of genes and the classification of identical or near-identical sequences as distinct genes has led to an overestimation of the complexity of reptile venoms in general, and snake venom in particular, with implications for our understanding of (and development of treatments to counter) the molecules responsible for the physiological consequences of snakebite.</jats:p

    The Genetics of Prey Susceptibility to Myxobacterial Predation:A Review, including an Investigation into Pseudomonas aeruginosa Mutations Affecting Predation by Myxococcus xanthus

    Get PDF
    Bacterial predation is a ubiquitous and fundamental biological process, which influences the community composition of microbial ecosystems. Among the best characterised bacterial predators are the myxobacteria, which include the model organism Myxococcus xanthus. Predation by M. xanthus involves the secretion of antibiotic metabolites and hydrolytic enzymes, which results in the lysis of prey organisms and release of prey nutrients into the extracellular milieu. Due to the generalist nature of this predatory mechanism, M. xanthus has a broad prey range, being able to kill and consume Gram-negative/positive bacteria and fungi. Potential prey organisms have evolved a range of behaviours which protect themselves from attack by predators. In recent years, several investigations have studied the molecular responses of a broad variety of prey organisms to M. xanthus predation. It seems that the diverse mechanisms employed by prey belong to a much smaller number of general "predation resistance" strategies. In this mini-review, we present the current state of knowledge regarding M. xanthus predation, and how prey organisms resist predation. As previous molecular studies of prey susceptibility have focussed on individual genes/metabolites, we have also undertaken a genome-wide screen for genes of Pseudomonas aeruginosa which contribute to its ability to resist predation. P. aeruginosa is a World Health Organisation priority 1 antibiotic-resistant pathogen. It is metabolically versatile and has an array of pathogenic mechanisms, leading to its prevalence as an opportunistic pathogen. Using a library of nearly 5,500 defined transposon insertion mutants, we screened for "prey genes", which when mutated allowed increased predation by a fluorescent strain of M. xanthus. A set of candidate "prey proteins" were identified, which shared common functional roles and whose nature suggested that predation resistance by P. aeruginosa requires an effective metal/oxidative stress system, an intact motility system, and mechanisms for de-toxifying antimicrobial peptides

    Unmasking the tail of the cosmic ray spectrum

    Get PDF
    A re-examination of the energy cosmic ray spectrum above 102010^{20} eV is presented. The overall data-base provides evidence, albeit still statistically limited, that non-nucleon primaries could be present at the end of the spectrum. In particular, the possible appearance of superheavy nuclei (seldom discussed in the literature) is analysed in detail.Comment: To appear in Phys. Lett. B with the title ``Possible explanation for the tail of the cosmic ray spectrum'

    A pot of gold at the end of the cosmic "raynbow"?

    Get PDF
    We critically review the common belief that ultrahigh energy cosmic rays are protons or atomic nuclei with masses not exceeding that of iron. We find that heavier nuclei are indeed possible, and discuss possible sources and acceleration mechanisms for such primaries. We also show detailed simulations of extensive air showers produced by ``superheavy'' nuclei, and discuss prospects for their detection in future experiments.Comment: Talk to be presented at the International Symposium on Very High Energy Cosmic Ray Interactions X

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation

    Search for Anomalous Couplings in the Higgs Sector at LEP

    Get PDF
    Anomalous couplings of the Higgs boson are searched for through the processes e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70 GeV < m_H < 190 GeV is explored using 602 pb^-1 of integrated luminosity collected with the L3 detector at LEP at centre-of-mass energies sqrt(s)=189-209 GeV. The Higgs decay channels H -> ffbar, H -> gamma gamma, H -> Z\gamma and H -> WW^(*) are considered and no evidence is found for anomalous Higgs production or decay. Limits on the anomalous couplings d, db, Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H -> gamma gamma and H -> Z gamma decay rates

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation

    Bose-Einstein Correlations of Neutral and Charged Pions in Hadronic Z Decays

    Get PDF
    Bose-Einstein correlations of both neutral and like-sign charged pion pairs are measured in a sample of 2 million hadronic Z decays collected with the L3 detector at LEP. The analysis is performed in the four-momentum difference range 300 MeV < Q < 2 GeV. The radius of the neutral pion source is found to be smaller than that of charged pions. This result is in qualitative agreement with the string fragmentation model
    corecore