341 research outputs found

    The Theistareykir Geothermal Field, NE Iceland. Isotopic Characteristics and Origin of Circulating Fluids

    Get PDF
    AbstractThe Theistareykir high temperature field in NE Iceland seems to be complex in terms of both inflow and structure, as reflected in the division of the area into several subfields. Oxygen and hydrogen isotopes in water and steam condensate from wells are reported. Some differences can be seen between the Theistareykir well fields, but the recharge is in all cases non-local in origin. The isotopic composition of some of the thermal waters is anomalously depleted in 2H, by about 35‰, compared to precipitation anywhere in Iceland today. The isotopes therefore suggest that the thermal water contains a component of past precipitation under a colder climate. The oxygen shift due to water-rock interaction is up to 6.5 ‰. The isotopic signature of the Theistareykir thermal water is compared to that from nearby low temperature fields within the westernmost part of the Northern Neovolcanic Zone

    Genetics of neurodegenerative diseases: insights from high-throughput resequencing

    Get PDF
    During the past three decades, we have witnessed remarkable advances in our understanding of the molecular etiologies of hereditary neurodegenerative diseases, which have been accomplished by ‘positional cloning’ strategies. The discoveries of the causative genes for hereditary neurodegenerative diseases accelerated not only the studies on the pathophysiologic mechanisms of diseases, but also the studies for the development of disease-modifying therapies. Genome-wide association studies (GWAS) based on the ‘common disease–common variants hypothesis’ are currently undertaken to elucidate disease-relevant alleles. Although GWAS have successfully revealed numerous susceptibility genes for neurodegenerative diseases, odds ratios associated with risk alleles are generally low and account for only a small proportion of estimated heritability. Recent studies have revealed that the effect sizes of the disease-relevant alleles that are identified based on comprehensive resequencing of large data sets of Parkinson disease are substantially larger than those identified by GWAS. These findings strongly argue for the role of the ‘common disease–multiple rare variants hypothesis’ in sporadic neurodegenerative diseases. Given the rapidly improving technologies of next-generation sequencing next-generation sequencing (NGS), we expect that NGS will eventually enable us to identify all the variants in an individual's personal genome, in particular, clinically relevant alleles. Beyond this, whole genome resequencing is expected to bring a paradigm shift in clinical practice, where clinical practice including diagnosis and decision-making for appropriate therapeutic procedures is based on the ‘personal genome’. The personal genome era is expected to be realized in the near future, and society needs to prepare for this new era

    Genetic evidence for a pathogenic role for the vitamin D3 metabolizing enzyme CYP24A1 in multiple sclerosis

    Get PDF
    Background: Multiple sclerosis (MS) is a common disease of the central nervous system and a major cause of disability amongst young adults. Genome-wide association studies have identified many novel susceptibility loci including rs2248359. We hypothesized that genotypes of this locus could increase the risk of MS by regulating expression of neighboring gene, CYP24A1 which encodes the enzyme responsible for initiating degradation of 1,25-dihydroxyvitamin D3. Methods: We investigated this hypothesis using paired gene expression and genotyping data from three independent datasets of neurologically healthy adults of European descent. The UK Brain Expression Consortium (UKBEC) consists of post-mortem samples across 10 brain regions originating from 134 individuals (1231 samples total). The North American Brain Expression Consortium (NABEC) consists of cerebellum and frontal cortex samples from 304 individuals (605 samples total). The brain dataset from Heinzen and colleagues consists of prefrontal cortex samples from 93 individuals. Additionally, we used gene network analysis to analyze UKBEC expression data to understand CYP24A1 function in human brain. Findings: The risk allele, rs2248359-C, is strongly associated with increased expression of CYP24A1 in frontal cortex (p-value=1.45×10−13), but not white matter. This association was replicated using data from NABEC (p-value=7.2×10−6) and Heinzen and colleagues (p-value=1.2×10−4). Network analysis shows a significant enrichment of terms related to immune response in eight out of the 10 brain regions. Interpretation: The known MS risk allele rs2248359-C increases CYP24A1 expression in human brain providing a genetic link between MS and vitamin D metabolism, and predicting that the physiologically active form of vitamin D3 is protective. Vitamin D3's involvement in MS may relate to its immunomodulatory functions in human brain. Finding: Medical Research Council UK; King Faisal Specialist Hospital and Research Centre, Saudi Arabia; Intramural Research Program of the National Institute on Aging, National Institutes of Health, USA

    Inter-hemispheric characterisation of small vessel disease imaging markers after subcortical infarct

    Get PDF
    BACKGROUND: In structural Magnetic Resonance Imaging (MRI) of patients with a recent small subcortical infarct (RSSI) and small vessel disease (SVD) imaging markers coexist. However, their spatial distribution and prevalence with respect to the hemisphere of the RSSI remain unknown. MATERIALS AND METHODS: From brain MRI in 187 patients with an acute lacunar ischemic stroke clinical syndrome and a relevant diffusion weighted imaging (DWI)‐positive lesion, we semiautomatically extracted the RSSI, microbleeds, lacunes, old cortical infarcts, and white matter hyperintensities (WMH) using optimized thresholding in the relevant sequences, and rated the load of perivascular spaces. We registered all images to an age‐relevant brain template and calculated the probability distribution of all SVD markers mentioned for patients who had the RSSI in each hemisphere separately. We used the Wilcoxon and chi‐squared tests to compare the volumes and frequencies of occurrence, respectively, of the SVD markers between hemispheres throughout the sample. RESULTS: Fifty‐two percent patients (n = 97) had the RSSI in the left hemisphere, 42% (n = 78) in the right, 2.7% (n = 5) in both, and 3.7% (n = 7) in the cerebellum or brainstem. There was no significant difference in RSSI frequency between left and right hemispheres (p = .10) in the sample. The median volume of the RSSI (expressed as a percentage of the total intracranial volume) was 0.05% (IQR = 0.06). There was no difference in median percent volume of the right RSSIs versus left (p = .16). Neither was there a significant interhemispheric difference in the volume of any of the SVD markers regardless of the location of the RSSI and they were equally distributed in both hemispheres. CONCLUSION: Assessment of SVD imaging markers in the contralateral hemisphere could be used as a proxy for the SVD load in the whole brain to avoid contamination by the RSSI of the measurements, especially of WMH

    Lack of evidence for a genetic association between FGF20 and Parkinson's disease in Finnish and Greek patients

    Get PDF
    BACKGROUND: Fibroblast growth factor 20 (FGF20) is a neurotrophic factor preferentially expressed in the substantia nigra of rat brain and could be involved in dopaminergic neurons survival. Recently, a strong genetic association has been found between FGF20 gene and the risk of suffering from Parkinson's disease (PD). Our aim was to replicate this association in two independent populations. METHODS: Allelic, genotypic, and haplotype frequencies of four biallelic polymorphisms were assessed in 151 sporadic PD cases and 186 controls from Greece, and 144 sporadic PD patients and 135 controls from Finland. RESULTS: No association was found in any of the populations studied. CONCLUSION: Taken together, these findings suggest that common genetic variants in FGF20 are not a risk factor for PD in, at least, some European populations

    Neural Substrate of Body Size: Illusory Feeling of Shrinking of the Waist

    Get PDF
    The perception of the size and shape of one's body (body image) is a fundamental aspect of how we experience ourselves. We studied the neural correlates underlying perceived changes in the relative size of body parts by using a perceptual illusion in which participants felt that their waist was shrinking. We scanned the brains of the participants using functional magnetic resonance imaging. We found that activity in the cortices lining the left postcentral sulcus and the anterior part of the intraparietal sulcus reflected the illusion of waist shrinking, and that this activity was correlated with the reported degree of shrinking. These results suggest that the perceived changes in the size and shape of body parts are mediated by hierarchically higher-order somatosensory areas in the parietal cortex. Based on this finding we suggest that relative size of body parts is computed by the integration of more elementary somatic signals from different body segments

    A Drastic Reduction in the Life Span of Cystatin C L68Q Carriers Due to Life-Style Changes during the Last Two Centuries

    Get PDF
    Hereditary cystatin C amyloid angiopathy (HCCAA) is an autosomal dominant disease with high penetrance, manifest by brain hemorrhages in young normotensive adults. In Iceland, this condition is caused by the L68Q mutation in the cystatin C gene, with contemporary carriers reaching an average age of only 30 years. Here, we report, based both on linkage disequilibrium and genealogical evidence, that all known copies of this mutation derive from a common ancestor born roughly 18 generations ago. Intriguingly, the genealogies reveal that obligate L68Q carriers born 1825 to 1900 experienced a drastic reduction in life span, from 65 years to the present-day average. At the same time, a parent-of-origin effect emerged, whereby maternal inheritance of the mutation was associated with a 9 year reduction in life span relative to paternal inheritance. As these trends can be observed in several different extended families, many generations after the mutational event, it seems likely that some environmental factor is responsible, perhaps linked to radical changes in the life-style of Icelanders during this period. A mutation with such radically different phenotypic effects in reaction to normal variation in human life-style not only opens the possibility of preventive strategies for HCCAA, but it may also provide novel insights into the complex relationship between genotype and environment in human disease

    New MR sequences in daily practice: susceptibility weighted imaging. A pictorial essay

    Get PDF
    Background Susceptibility-weighted imaging (SWI) is a relatively new magnetic resonance (MR) technique that exploits the magnetic susceptibility differences of various tissues, such as blood, iron and calcification, as a new source of contrast enhancement. This pictorial review is aimed at illustrating and discussing its main clinical applications. Methods SWI is based on high-resolution, threedimensional (3D), fully velocity-compensated gradientecho sequences using both magnitude and phase images. A phase mask obtained from the MR phase images is multiplied with magnitude images in order to increase the visualisation of the smaller veins and other sources of susceptibility effects, which are displayed at best after postprocessing of the 3D dataset with the minimal intensity projection (minIP) algorithm. Results SWI is very useful in detecting cerebral microbleeds in ageing and occult low-flow vascular malformations, in characterising brain tumours and degenerative diseases of the brain, and in recognizing calcifications in various pathological conditions. The phase images are especially useful in differentiating between paramagnetic susceptibility effects of blood and diamagnetic effects of calcium. SWI can also be used to evaluate changes in iron content in different neurodegenerative disorders. Conclusion SWI is useful in differentiating and characterising diverse brain disorders

    Significance of the parkin and PINK1 gene in Jordanian families with incidences of young-onset and juvenile parkinsonism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parkinson's disease is a progressive neurodegenerative disorder, where most cases are sporadic with a late onset. In rare incidences familial forms of early-onset parkinsonism occur, and when recessively inherited, cases are often explained by mutations in either the <it>parkin </it>(PARK2) or <it>PINK1 </it>(PARK6) gene or on exceptional occasions the <it>DJ-1 </it>(PARK7) or <it>ATP13A2 </it>(PARK9) gene. Recessively inherited deletions/duplications and point mutations in the <it>parkin </it>gene are the most common cause of early-onset parkinsonism known so far, but in an increasing number of studies, genetic variations in the serine/threonine kinase domain of the <it>PINK1 </it>gene are found to explain early-onset parkinsonism.</p> <p>Methods</p> <p>In this study all families were from a population with a high incidence of consanguinity. We investigated 11 consanguineous families comprising 17 affected with recessively inherited young-onset parkinsonism for mutations both in the <it>parkin </it>and <it>PINK1 </it>gene. Exons and flanking regions were sequenced, and segregation patterns of genetic variation were assessed in members of the respective families. An exon dosage analysis was performed for all exons in both genes.</p> <p>Results</p> <p>In the <it>parkin </it>gene, a three generation family was identified with an exon 4 deletion segregating with disease. Both affected were homozygous for the deletion that segregated on a haplotype that spanned the gene in a haplotype segregation analysis that was performed using additional markers. Exon dosage analysis confirmed the recessive pattern of inheritance with heterozygous deletions segregating in healthy family members. In the <it>PINK1 </it>gene we identified two novel putative pathogenic substitutions, P416R and S419P, located in a conserved motif of the serine/threonine kinase domain. Both substitutions segregated with disease in agreement with a recessive pattern of inheritance within respective families and both were present as homozygous in two affected each. We also discuss common polymorphisms in the two genes found to be co-segregating within families.</p> <p>Conclusion</p> <p>Our results further extend on the involvement of <it>PINK1 </it>mutations in recessive early-onset parkinsonism with clinical features similar to carriers of <it>parkin </it>mutations.</p
    corecore