306 research outputs found

    Comparative genome analysis of Wolbachia strain wAu

    Get PDF
    BACKGROUND: Wolbachia intracellular bacteria can manipulate the reproduction of their arthropod hosts, including inducing sterility between populations known as cytoplasmic incompatibility (CI). Certain strains have been identified that are unable to induce or rescue CI, including wAu from Drosophila. Genome sequencing and comparison with CI-inducing related strain wMel was undertaken in order to better understand the molecular basis of the phenotype. RESULTS: Although the genomes were broadly similar, several rearrangements were identified, particularly in the prophage regions. Many orthologous genes contained single nucleotide polymorphisms (SNPs) between the two strains, but a subset containing major differences that would likely cause inactivation in wAu were identified, including the absence of the wMel ortholog of a gene recently identified as a CI candidate in a proteomic study. The comparative analyses also focused on a family of transcriptional regulator genes implicated in CI in previous work, and revealed numerous differences between the strains, including those that would have major effects on predicted function. CONCLUSIONS: The study provides support for existing candidates and novel genes that may be involved in CI, and provides a basis for further functional studies to examine the molecular basis of the phenotype

    Graphical augmentations to the funnel plot assess the impact of additional evidence on a meta-analysis

    Get PDF
    AbstractObjectiveWe aim to illustrate the potential impact of a new study on a meta-analysis, which gives an indication of the robustness of the meta-analysis.Study Design and SettingA number of augmentations are proposed to one of the most widely used of graphical displays, the funnel plot. Namely, 1) statistical significance contours, which define regions of the funnel plot in which a new study would have to be located to change the statistical significance of the meta-analysis; and 2) heterogeneity contours, which show how a new study would affect the extent of heterogeneity in a given meta-analysis. Several other features are also described, and the use of multiple features simultaneously is considered.ResultsThe statistical significance contours suggest that one additional study, no matter how large, may have a very limited impact on the statistical significance of a meta-analysis. The heterogeneity contours illustrate that one outlying study can increase the level of heterogeneity dramatically.ConclusionThe additional features of the funnel plot have applications including 1) informing sample size calculations for the design of future studies eligible for inclusion in the meta-analysis; and 2) informing the updating prioritization of a portfolio of meta-analyses such as those prepared by the Cochrane Collaboration

    The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium

    Get PDF
    A new approach to the interpretation and analysis of coherent inelastic neutron scattering from polycrystals (poly-CINS) is presented. Here we describe a simulation of the one-phonon coherent inelastic scattering from a lattice model of an arbitrary crystal system. The one-phonon component is characterized by sharp features e.g. determined by boundaries of the (Q, omega) regions where one-phonon scattering is allowed. These features may be identified with the same features apparent in the measured total coherent inelastic cross-section, the other components of which(multiphonon or multiple scattering) show no sharp features. The parameters of the model can then be relaxed to improve the fit between model and experiment. This method is of particular interest where no single crystals are available. To test the approach, we have measured the poly-CINS for polycrystalline aluminium using the MARI spectrometer (ISIS) because both lattice dynamical models and measured dispersion curves are available for this material. The models used include a simple Lennard-Jones model fitted to the elastic constants of this material plus a number of Embedded Atom Method (EAM) force fields. The agreement obtained suggests that the method demonstrated should be effective in developing models for other materials where single crystal dispersion curves are not available

    Opinion: Midwater Ecosystems Must Be Considered When Evaluating Environmental Risks of Deep-Sea Mining

    Get PDF
    Despite rapidly growing interest in deep-sea mineral exploitation, environmental research and management have focused on impacts to seafloor environments, paying little attention to pelagic ecosystems. Nonetheless, research indicates that seafloor mining will generate sediment plumes and noise at the seabed and in the water column that may have extensive ecological effects in deep midwaters (1), which can extend from an approximate depth of 200 meters to 5 kilometers. Deep midwater ecosystems represent more than 90% of the biosphere (2), contain fish biomass 100 times greater than the global annual fish catch (3), connect shallow and deep-sea ecosystems, and play key roles in carbon export (4), nutrient regeneration, and provisioning of harvestable fish stocks (5). These ecosystem services, as well as biodiversity, could be negatively affected by mining. Here we argue that deep-sea mining poses significant risks to midwater ecosystems and suggest how these risks could be evaluated more comprehensively to enable environmental resource managers and society at large to decide whether and how deep-sea mining should proceed

    Exploring the Design Space of Static and Incremental Graph Connectivity Algorithms on GPUs

    Full text link
    Connected components and spanning forest are fundamental graph algorithms due to their use in many important applications, such as graph clustering and image segmentation. GPUs are an ideal platform for graph algorithms due to their high peak performance and memory bandwidth. While there exist several GPU connectivity algorithms in the literature, many design choices have not yet been explored. In this paper, we explore various design choices in GPU connectivity algorithms, including sampling, linking, and tree compression, for both the static as well as the incremental setting. Our various design choices lead to over 300 new GPU implementations of connectivity, many of which outperform state-of-the-art. We present an experimental evaluation, and show that we achieve an average speedup of 2.47x speedup over existing static algorithms. In the incremental setting, we achieve a throughput of up to 48.23 billion edges per second. Compared to state-of-the-art CPU implementations on a 72-core machine, we achieve a speedup of 8.26--14.51x for static connectivity and 1.85--13.36x for incremental connectivity using a Tesla V100 GPU

    Report of the Workshop Evaluating the Nature of Midwater Mining Plumes and Their Potential Effects on Midwater Ecosystems

    Get PDF
    The International Seabed Authority (ISA) is developing regulations to control the future exploitation of deep-sea mineral resources including sulphide deposits near hydrothermal vents, polymetallic nodules on the abyssal seafloor, and cobalt crusts on seamounts. Under the UN Convention on the Law of the Sea the ISA is required to adopt are taking measures to ensure the effective protection of the marine environment from harmful effects arising from mining-related activities. Contractors are required to generate environmental baselines and assess the potential environmental consequences of deep seafloor mining. Understandably, nearly all environmental research has focused on the seafloor where the most direct mining effects will occur. However, sediment plumes and other impacts (e.g., noise) from seafloor mining are likely to be extensive in the water column. Sediment plumes created on the seafloor will affect the benthic boundary layer which extends 10s to 100s of meters above the seafloor. Separation or dewatering of ore from sediment and seawater aboard ships will require discharge of a dewatering plume at some depth in the water column. It is important to consider the potential impacts of mining on the ocean’s midwaters (depths from ~200 m to the seafloor) because they provide vital ecosystem services and harbor substantial biodiversity. The better known epipelagic or sunlit surface ocean provisions the rest of the water column through primary production and export flux (This was not the focus at this workshop as the subject was considered too large and surface discharges are unlikely). It is also home to a diverse community of organisms including commercially important fishes such as tunas, billfish, and cephalopods that contribute to the economies of many countries. The mesopelagic or twilight zone (200-1000 m) is dimly lit and home to very diverse and abundant communities of organisms. Mesopelagic plankton and small nekton form the forage base for many deep-diving marine mammals and commercially harvested epipelagic species. Furthermore, detritus from the epipelagic zone falls through the mesopelagic where it is either recycled, providing the vital process of nutrient regeneration, or sinks to greater depths sequestering carbon from short-term atmospheric cycles. The waters below the mesopelagic down to the seafloor (both the bathypelagic and abyssopelagic) are very poorly characterized but are likely large reservoirs of novel biodiversity and link the surface and benthic ecosystems. Great strides have been made in understanding the biodiversity and ecosystem function of the ocean’s midwaters, but large regions, including those containing many exploration license areas and the greater depths where mining plumes will occur, remain very poorly studied. It is clear that pelagic communities are distinct from those on the seafloor and in the benthic boundary layer. They are often sampled with different instrumentation. The fauna have relatively large biogeographic ranges and they are more apt to mix freely across stakeholder boundaries, reference areas and other spatial management zones. Pelagic organisms live in a three-dimensional habitat and their food webs and populations are vertically connected by daily or lifetime migrations and the sinking flux of detritus from the epipelagic. The fauna do not normally encounter hard surfaces, making them fragile, and difficult to capture and maintain for sensitivity or toxicity studies. Despite some existing general knowledge, ecological baselines for midwater communities and ecosystems that likely will be impacted by mining have not been documented. There is an urgent need to conduct more research and evaluate the midwater biota (microbes to fishes) in regions where mining is likely to occur. Deep-sea mining activities may affect midwater organisms in a number of ways, but it is still unclear at what scale perturbations may occur. The sediment plumes both from collectors on the seafloor and from midwater discharge will have a host of negative consequences. They may cause respiratory distress from clogged gills or respiratory surfaces. Suspension feeders, such as copepods, polychaetes, salps, and appendicularians, that filter small particles from the water and form an important basal group of the food web, may suffer from dilution of their food by inorganic sediments and/or clogging of their fragile mucous filter nets. Small particles may settle on gelatinous plankton causing buoyancy issues. Metals, including toxic elements that will enter the food web, will be released from pore waters and crushed ore materials. Sediment plumes will also absorb light and change backscatter properties, reducing visual communication and bioluminescent signaling that are very important for prey capture and reproduction in midwater animals. Noise from mining activities may alter the behaviors of marine mammals and other animals. Small particles have high surface area to volume ratios, high pelagic persistence and dispersal and as a result greater potential to result in pelagic impacts. All of these potential effects will result in mortality, migration (both horizontal and vertical), decreased fitness, and shifts in community composition. Depending on the scale and duration of these effects, there could be reduction in provisioning to commercial fish species, delivery of toxic metals to pelagic food webs and hence human seafood supply, and alterations to carbon transport and nutrient regeneration services. After four days of presentations and discussions, the workshop participants came to several conclusions and synthesized recommendations. 1. Assuming no discharge in the epipelagic zone, it is essential to minimize mining effects in the mesopelagic zone because of links to our human seafood supply as well as other ecosystem services provided by the mesopelagic fauna. This minimization could be accomplished by delivering dewatering discharge well below the mesopelagic/bathypelagic transition (below ~1000 m depth). 2. Research should be promoted by the ISA and other bodies to study the bathypelagic and abyssopelagic zones (from ~1000 m depths to just above the seafloor). It is likely that both collector plumes and dewatering plumes will be created in the bathypelagic, yet this zone is extremely understudied and contains major unknowns for evaluating mining impacts. 3. Management objectives, regulations and management actions need to prevent the creation of a persistent regional scale “haze” (enhanced suspended particle concentrations) in pelagic midwaters. Such a haze would very likely cause chronic harm to deep midwater ecosystem biodiversity, structure and function. 4. Effort is needed to craft suitable standards, thresholds, and indicators of harmful environmental effects that are appropriate to pelagic ecosystems. In particular, suspension feeders are very important ecologically and are likely to be very sensitive to sediment plumes. They are a high priority for study. 5. Particularly noisy mining activities such as ore grinding at seamounts and hydrothermal vents is of concern to deep diving marine mammals and other species. One way to minimize sound impacts would be to minimize activities in the sound-fixing-and-ranging (SOFAR) channel (typically at depths of ~1000 m) which transmits sounds over very long distances. 6. A Lagrangian (drifting) perspective is needed in monitoring and management because the pelagic ecosystem is not a fixed habitat and mining effects are likely to cross spatial management boundaries. For example, potential broad-scale impacts to pelagic ecosystems should be considered in the deliberations over preservation reference zones, the choice of stations for environmental baseline and monitoring studies and other area-based management and conservation measures. 7. Much more modeling and empirical study of realistic mining sediment plumes is needed. Plume models will help evaluate the spatial and temporal extent of pelagic (as well as benthic) ecosystem effects and help to assess risks from different technologies and mining scenarios. Plume modeling should include realistic mining scenarios (including duration) and assess the spatial-temporal scales over which particle concentrations exceed baseline levels and interfere with light transmission to elucidate potential stresses on communities and ecosystem services. Models should include both near and far field-phases, incorporating realistic near field parameters of plume generation, flocculation, particle sinking, and other processes. It is important to note that some inputs to these models such as physical oceanographic parameters are lacking and should be acquired in the near-term. Plume models need to be complemented by studies to understand effects on biological components by certain particle sizes and concentrations

    Metabolic Complementarity and Genomics of the Dual Bacterial Symbiosis of Sharpshooters

    Get PDF
    Mutualistic intracellular symbiosis between bacteria and insects is a widespread phenomenon that has contributed to the global success of insects. The symbionts, by provisioning nutrients lacking from diets, allow various insects to occupy or dominate ecological niches that might otherwise be unavailable. One such insect is the glassy-winged sharpshooter (Homalodisca coagulata), which feeds on xylem fluid, a diet exceptionally poor in organic nutrients. Phylogenetic studies based on rRNA have shown two types of bacterial symbionts to be coevolving with sharpshooters: the gamma-proteobacterium Baumannia cicadellinicola and the Bacteroidetes species Sulcia muelleri. We report here the sequencing and analysis of the 686,192–base pair genome of B. cicadellinicola and approximately 150 kilobase pairs of the small genome of S. muelleri, both isolated from H. coagulata. Our study, which to our knowledge is the first genomic analysis of an obligate symbiosis involving multiple partners, suggests striking complementarity in the biosynthetic capabilities of the two symbionts: B. cicadellinicola devotes a substantial portion of its genome to the biosynthesis of vitamins and cofactors required by animals and lacks most amino acid biosynthetic pathways, whereas S. muelleri apparently produces most or all of the essential amino acids needed by its host. This finding, along with other results of our genome analysis, suggests the existence of metabolic codependency among the two unrelated endosymbionts and their insect host. This dual symbiosis provides a model case for studying correlated genome evolution and genome reduction involving multiple organisms in an intimate, obligate mutualistic relationship. In addition, our analysis provides insight for the first time into the differences in symbionts between insects (e.g., aphids) that feed on phloem versus those like H. coagulata that feed on xylem. Finally, the genomes of these two symbionts provide potential targets for controlling plant pathogens such as Xylella fastidiosa, a major agroeconomic problem, for which H. coagulata and other sharpshooters serve as vectors of transmission
    corecore