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Graphical augmentations to the funnel plot assess the impact of additional
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Abstract
Objective: We aim to illustrate the potential impact of a new study on a meta-analysis, which gives an indication of the robustness of
the meta-analysis.

Study Design and Setting: A number of augmentations are proposed to one of the most widely used of graphical displays, the funnel
plot. Namely, 1) statistical significance contours, which define regions of the funnel plot in which a new study would have to be located to
change the statistical significance of the meta-analysis; and 2) heterogeneity contours, which show how a new study would affect the extent
of heterogeneity in a given meta-analysis. Several other features are also described, and the use of multiple features simultaneously is
considered.

Results: The statistical significance contours suggest that one additional study, no matter how large, may have a very limited impact on
the statistical significance of a meta-analysis. The heterogeneity contours illustrate that one outlying study can increase the level of het-
erogeneity dramatically.

Conclusion: The additional features of the funnel plot have applications including 1) informing sample size calculations for the design
of future studies eligible for inclusion in the meta-analysis; and 2) informing the updating prioritization of a portfolio of meta-analyses such
as those prepared by the Cochrane Collaboration.
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1. Introduction

Graphical displays have become an integral part of re-
porting in meta-analysis and can facilitate the communica-
tion of important features and results of the associated
statistical analysis. For example, the variability of results
between studies, often referred to as heterogeneity, or the
influence of individual studies on the analysis can be con-
veyed effectively using graphical means. The reader is re-
ferred elsewhere for recent comprehensive reviews and
critiques of graphical displays used in meta-analysis [1,2].

This article proposes augmentations to one of the most
widely used of graphical displays, the funnel plot [3]. In
particular, we describe several novel overlays to the funnel
plot, which provide a visual illustration of the impact that
new studies would have on a given meta-analysis. We argue
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that the additional features may help to 1) establish the cur-
rent robustness of a meta-analysis; 2) inform sample size
calculations for the design of future studies that might be
added to the meta-analysis [4]; and 3) help decide from
of a portfolio of meta-analyses (such as those managed
by Review Groups within the Cochrane Collaboration)
which should be prioritized for updating [5].

A funnel plot is simply a scatter plot of each study’s ef-
fect estimate (usually on the x-axis) against some measure
of the precision of the effect (usually on the y-axis). They
were first used by Light and Pillemer [3] to detect publica-
tion bias. Because larger studies typically have a more pre-
cise estimate of effect, theoretically there should be less
variability between such estimates than those from less pre-
cise estimates from smaller studies, which are located lower
down the plot. In the absence of bias and heterogeneity, the
plot should therefore appear funnel shaped with greatest
variability at the bottom and least variability at the top.

If publication bias is present, the plot can appear asym-
metric because it is often assumed that small studies with
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What is new?

� Augmentations to the funnel plot can illustrate and
help to assess the potential impact of a new study
on a meta-analysis.

� The funnel plot was previously only considered for
illustrating bias and between-study heterogeneity.

� The presented funnel plot augmentations will help:

i. Meta-analysts considering how robust current
conclusions are to the inclusion of future evi-
dence from a further study;

ii. Primary researchers to assess the impact stud-
ies they design could have on an existing
meta-analysis; and

iii. Inform the update prioritization of portfolios of
systematic reviews, as required by organiza-
tions such as the Cochrane Collaboration.

� Implementation of the funnel plot augmentations is
made available via downloadable code for the ‘‘R’’
statistics package.

negative effects are suppressed by such mechanisms
(e.g., see Fig. 1A). However, several factors other than pub-
lication bias can lead to a funnel plot appearing asymmet-
rical [6]. If within-study biases are more likely in smaller
studies than in larger studies, then asymmetry can occur,
for example, if points lower down the plot are shifted in
a particular direction. Furthermore, if heterogeneity is pres-
ent, and is caused by factors that are correlated with preci-
sion, then asymmetry will occur in the funnel plot. In
Fig. 1. A. Funnel plot including line of no effect, summary effect and pseud
quitting smoking [9]. B. Contour enhanced funnel plot derived from a revie
practice, it is difficult to distinguish between these potential
reasons for funnel plot asymmetry, or indeed to distinguish
any of them from chance. A discussion of the most appro-
priate scales for both axes of a funnel plot is available else-
where [7]; we will plot the standard error (SE) on the
vertical scale, with SE5 0 at the top. For a fuller history
of the origins of funnel plots, see Sterne et al. [8].

In Section 2, we review previous augmentations to the
funnel plot and their uses to assess publication biases and
heterogeneity. Then, in Section 3, we present our novel
overlays and apply them to illustrative examples from the
perspective of the meta-analyst assessing the robustness
of the conclusions to further evidence. In Section 4, we
consider the application of the overlays from the perspec-
tive of someone designing a study to assess the impact of
that study on the existing evidence base. Section 5, the dis-
cussion, concludes the paper.
2. Existing augmentations to funnel plots

Some general features have been proposed to be added
to the funnel plot. We illustrate some in Fig. 1A, B using
a data set derived from a fixed-effect meta-analysis of
studies looking at whether rapid smoking is effective for
quitting smoking in terms of abstinence at long-term
follow-up [9]. Commonly included are the line of no effect
(the thin vertical line in Fig. 1A), and the summary effect
from the meta-analysis (the bold vertical line in Fig. 1A).
Additionally, a pseudo confidence interval can be used to
indicate the region within which we would expect 95% of
studies to lie if the studies are all estimating the same un-
derlying effect [10] (the dotted sloping lines in Fig. 1A).
Such boundaries are useful for assessing the presence of
heterogeneity in a meta-analysis data set because in the
presence of heterogeneity less than 95% of the studies
o 95% confidence interval derived from a review of rapid smoking for
w of rapid smoking for quitting smoking [9].
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would be inside the inverted triangle. The feature has since
been widely used in meta-analysis [11,12] and imple-
mented as a default setting into meta-analysis macros avail-
able for statistical packages such as Stata and R [10,13].

A more recently proposed additional feature is a series
of contours of statistical significance for individual studies
[14]. These contours, illustrated in Fig. 1B, highlight the re-
gions in which studies would need to be in order to achieve
a given level of significance; the contours are usually plot-
ted for a range of traditionally used significance levels de-
fined by P-values of 0.01, 0.05, and 0.1. These contours can
help distinguish between publication biases and other fac-
tors as causes of funnel plot asymmetry. For instance, if
the region where studies are perceived to be missing is an
area of statistical nonsignificance (indicated by the white
area in Fig. 1B) then this adds credence to the possibility
that asymmetry is caused by publication bias, whereas if
studies are missing in areas of high statistical significance
(indicated by the darker regions on Fig. 1B) then publica-
tion bias might be a less plausible explanation.

In the next section, we consider further overlaying fea-
tures, which assess the impact of further evidence on
a meta-analysis.
3. Novel graphical methods for assessing the impact of
potential future studies on a meta-analysis

We introduce two features that illustrate the potential
impact of one additional study on a meta-analysis. Both are
contours,which overlay the funnel plot and divide it intomul-
tiple regions in which an additional study might be located.
Different regions represent different types of impact that
the additional study would have on the meta-analysis. The
potential impacts we consider are first, changes in statistical
significance of the summary effect size and, second, the ex-
tent of between-study heterogeneity. The theory behind the
contours is explained in Appendices 1 and 2 on the journal’s
Web site at www.jclinepi.com. We present the ideas through
a series of examples, which highlight how such plots can re-
veal importantly different consequences for different meta-
analysis data sets. Graphical features presented in this article
are restricted to assessing the impact of one additional study;
hence, the approach has limitations if multiple additional
studies are of interest. A computer program in R (version
2.12.0; www.r-project.org) has been written to generate all
graphs of the types presented in this article, and is available
via the R package named extfunnel [15]. A second program
is currently being written to produce the plots in Stata (Stata-
Corp. 2011. Stata Statistical Software: Release 12. College
Station, TX: StataCorp LP).
3.1. Significance contours

Contours of statistical significance show, in an additional
study, which combinations of effect size and SE would be
required to change or maintain the statistical significance
of the summary estimate from the meta-analysis. Note that
these contours relate to statistical significance of the meta-
analysis, rather than of the individual studies as described
in the previous section. The derivation of the statistical sig-
nificance contours is documented in Appendix 1 on the
journal’s Web site at www.jclinepi.com.

Fig. 2A presents a fixed-effect meta-analysis of four
clinical trials studying a change in the Epworth score for or-
al appliance vs. continuous positive airways pressure for
treating obstructive sleep apnea [16]. The summary effect
size represented by the solid diamond on the plot is 0.55
(95% confidence interval [CI]: �0.29, 1.38), implying that
the summary result is not statistically significant at the 5%
level. If an additional study existed, or were to be per-
formed, that had an effect size and SE that placed it in
the central region (nonshaded) of the graph, this would
maintain the nonsignificance of the meta-analysis. How-
ever, if the additional study were to occupy the top left
(light gray) or top right (dark gray) regions of the graph
then the meta-analysis would become statistically signifi-
cant with a difference in favor of the oral appliance or
the continuous positive airways pressure, respectively. In
this example, we might conclude that the meta-analysis is
not robust to the addition of new evidence, because an ad-
ditional study that would change the statistical significance
of the meta-analysis is plausible. The results would seem
particularly prone to moving toward a difference favoring
the continuous positive airways pressure because one of
the four existing trials is located in the area that would pro-
duce a statistically significant summary effect in this
direction.

A contrasting example, presented in Fig. 2B, is taken
from a meta-analysis looking at nonbenzodiazapines for
acute lower back pain [17]. The random-effects meta-
analysis is currently (just) statistically significant, as can
be seen from the diamond at the top of the graph represent-
ing the summary risk ratio of 0.55 and 95% CI from 0.33 to
0.91. In this case, the meta-analysis could be considered
reasonably robust to a single additional trial (but possibly
not multiple trials) because it appears unlikely that a trial
would be located in the two nonshaded regions representing
a change to statistical nonsignificance: none of the four
existing trials lie in this region.

An additional study occupying the (nonshaded) right
hand region of Fig. 2B would demonstrate a RR (risk ratio)
in the direction opposite to that currently observed in the
meta-analysis. Adding this study, which contradicts the cur-
rent meta-analysis, would change the meta-analysis to non-
significant. However, an interesting feature of Fig. 2B is the
small nonshaded region occupying the upper left portion of
the graph. An additional study in this region (although un-
likely in practice) has a very small RR in the same direction
as the meta-analysis result, but would change the meta-
analysis to have a nonsignificant summary RR despite
concluding a RR of !1 in isolation. As a general rule,

http://www.jclinepi.com
http://www.r-project.org
http://www.jclinepi.com


Fig. 2. A. Significance contours for the fixed-effect meta-analysis: oral appliance vs. continuous positive airways pressure with outcome the
Epworth score [16]. B. Significance contours for the random-effects meta-analysis: comparison of nonbenzodiazapines vs. placebo for acute
low back pain (2e4 days follow-up) [17]. C. Significance contours for the fixed-effect meta-analysis: comparison of kava vs. placebo for anxiety
with outcome being improvement in the HAMA score [18]. D. Significance contours for the random-effects meta-analysis: comparison of kava
vs. placebo for anxiety with outcome being improvement in the HAMA score [18].
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an extreme region exists in either direction where a study
would undoubtedly conclude some significant effect in iso-
lation yet change the meta-analysis to become nonsignifi-
cant. This is because any shift in the summary estimates
away from the null value caused by the extreme study is
outweighed by the increase in between-study heterogeneity
and subsequent increase in uncertainty around the mean
of the random-effects distribution. Such apparently para-
doxical findings will not occur under a fixed-effect meta-
analysis model.
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Fig. 2C, D illustrates a meta-analysis of clinical trials
examining the effectiveness of kava for treating anxiety
[18]. Fig. 2C shows statistical significance contours
under a fixed-effect model, whereas Fig. 2D shows them
for a random-effects model. These plots demonstrate that
while the current summary estimates both have the same
conclusion (i.e., kava is beneficial at the 5% significance
level), the overlaid contours can look quite different for
the two meta-analysis models. A further trial would have
to be quite large under the fixed-effect assumption to
change conclusions (i.e., have a SE less than approximately
2) while a trial of any size and a negative treatment differ-
ence could potentially change the conclusions of the
random-effects model (and such a trial has already been ob-
served). In neither instance would the conclusion appear
particularly robust to the inclusion of a further trial. Note
also that the nonshaded region in the top right of Fig. 2D
shows the same phenomenon as Fig. 2B, that is, that an ex-
treme positive effect in a new trial can make the random-
effects meta-analysis nonsignificant.
3.2. Heterogeneity contours

Our second proposed augmentation to the funnel plot is
a series of heterogeneity contours that indicate how the ex-
tent of between-study heterogeneity would change on the
addition of a new study (see Appendix 2 on the journal’s
Web site at www.jclinepi.com). We consider the influence
of the new study on the between-study variance parameter,
t2, and the I2 statistic [19]. These contours indicate the
Fig. 3. A. Heterogeneity contours based on t2 for the meta-analysis: Sanch
patients with no neurological improvement [20]. B. Same heterogeneity co
ischemic stroke with outcome as proportion of patients with no neurologica
robustness of the extent of heterogeneity observed, giving
an indication of the extent to which these measures could
realistically change on the addition of a further study.

Fig. 3A considers a meta-analysis of Sanchi vs. control
as a treatment for ischemic stroke [20]. The summary RR
from a fixed-effect model is 0.33 and is represented in
the Figure by the vertical solid line. The curved lines either
side of this line are contours for particular values of t2, and
represent the effect estimates and SEs that would be re-
quired of a new study for t2 to move to these specific
values. Mental interpolation between contours can be used
to get approximate values for unplotted values of t2. The
current level of heterogeneity as measured by t2 is 0.187,
this is represented in the figure by the solid black lines
(i.e., second outer most curves on the figure). New studies
lying on these contours would not affect the value of t2. To
decrease the current value for t2, an additional study must
occupy the region inside of these solid black contours. Sim-
ilarly, an additional study occupying the region outside of
these contours will increase t2.

The theoretical lower bound of 0 for t2 may not be attain-
able when heterogeneity is already present in a meta-
analysis. The minimum possible value for t2 on the addition
of a single new study may be obtained when the effect esti-
mate in a new study is equal to the fixed-effect meta-analysis
estimate from the existing studies. t2 will be minimized if
this new study has a very small SE (see Appendix 2.1 on
the journal’s Web site at www.jclinepi.com). In the example
given in Fig. 3A, the minimum t2 is 0.017. We plot contours
for a range of t2 values chosen to span an area of plausible
i vs. control for acute ischemic stroke with outcome as proportion of
ntours based on I2 for the meta-analysis: Sanchi vs. control for acute
l improvement [20].

http://www.jclinepi.com
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estimates and SEs for a new study. For example, contours for
t25 0.04, 0.07, 0.187 (the observed t2), and 0.4 in Fig. 3A
span the range of observed studies.

Fig. 3B illustrates similar contours for the heterogeneity
statistic, I2, using the same data. The value of I2 for existing
studies is 24.8%. The contours have different shapes from
those of t2. For example, the contour for an I2 value of
6.5% implies that in order to reduce I2 to 6.5% a new study
must have an effect estimate very close to the current sum-
mary RR of 0.33, closer than any other existing study. The
SE of the additional study within this region has little im-
pact on how much I2 decreases. This is unlike the heteroge-
neity contours based on the t2 statistic seen in Fig. 3A. The
contour for a t2 value of 0.04 implies that in order to reduce
t2 to 0.04 a new study must have a SE larger than approx-
imately 1.1 (i.e., the turning point for this contour). This
matches intuition: larger additional studies should have
more impact on the extent of heterogeneity.
4. Uses of the graphical overlays for planning future
studies

Our proposed graphical methods can help to illustrate
the robustness of an existing meta-analysis to the addition
of a further study. Rather than taking the perspective of
a meta-analyst summarizing existing evidence, we could in-
stead take the perspective of a primary researcher designing
a new study. The relevant question might then be ‘‘What is
the potential impact of an additional study I may conduct
on the existing evidence base (as represented by the
meta-analysis)?’’ Specifically, it would be helpful for the
researcher to know if their study was likely to change the
statistical significance of the meta-analysis, and possibly
how much their new study could potentially change the
level of between-study heterogeneity. Of course, the inter-
pretation of the plots in the previous section can be directly
translated to this perspective. In this section, we consider
the above plots for this use, together with some extra plot
overlays specifically for this purpose.

Sutton et al. [21] and Goudie et al. [22] have suggested
that meta-analysis can be a valuable approach to the design
of future clinical trials, also proposing a formal methodical
approach to sample size calculation of a trial for the incor-
poration of the trial into an existing meta-analysis using
simulation methods [4]. Here, we illustrate how the plots
described in Section 3 can complement the simulation ap-
proach described by Sutton et al. [4]. In particular, results
from their simulations can be overlaid on the statistical sig-
nificance contour plots to illustrate statistical power for
a given sample size of a future study. Overlaying the sim-
ulation results on the heterogeneity contour plots is simi-
larly possible. Following this, further exploratory features
informing power and sample size, which will be useful be-
fore conducting detailed sample size calculations are con-
sidered (in this context, we use power to refer to the
probability of changing the statistical significance of the
meta-analysis and thus has a slightly different meaning than
when used in more traditional context, e.g., the design and
analysis of an individual trial on its own).

We consider as an example a meta-analysis of six clinical
trials investigating the use of antibiotics vs. control to treat
the common cold, specifically with regard to alleviating
symptoms by 7 days. Sutton et al. [4] originally used this
example to illustrate their simulation approach. A random-
effects meta-analysis of the existing studies had a (nonsignif-
icant) summary odds ratio of 0.77 (95% CI: 0.5, 1.21).
Fig. 4A illustrates the statistical significance contour plot
for this analysis. Only a trial located in the relatively small
light gray area toward the top of the plot would produce a sta-
tistically significant and beneficial effect of antibiotic.

Sutton et al. [4] noted using their simulation approach
that large sample sizes would be required for a new study
to have any reasonable power to change the conclusions
of the existing meta-analysis. The reasons for this become
immediately apparent by looking at Fig. 4A, where it can
be seen that no study with a SE greater than 0.2 can change
the inferences of the meta-analysis. Thus, a first benefit of
this plot is identifying situations like this in which much of
the computational burden of a simulation approach can be
avoided through the initial scoping of much of the param-
eter space allowed by the plot.

Fig. 4B presents a vertically stretched version of an area
toward the top right of Fig. 4A. This is the critical region,
within which a new study could lead to a change in the statis-
tical significance of the meta-analysis. Onto this plot, we
have overlaid 300 simulated trials generated from a meta-
analytic predictive distribution as described by Sutton et al.
[4]. Each of these trials has 2,000 (simulated) patients in each
arm. The x-axis spread of these points represents the variabil-
ity in the effect size, which would be observed in a future trial
based on the meta-analysis of the current evidence. The pro-
portion of the trials that are contained within the darker re-
gion provides an estimate of power of a future study to
change the conclusions of the existing meta-analysis. In this
instance, the power is relatively low because a large propor-
tion of points lie outside the dark region. In fact, Sutton et al.
observed the power to be 44%. The 95% prediction interval
for the underlying treatment effect in a new study is also in-
cluded in Fig. 4B [23] (i.e., the lines extending out from the
pooled estimate ‘‘diamond’’). This is relatively wide because
of the presence of heterogeneity among the existing trials.
Note that the spread of simulated trials is wider than this in-
terval because of the extra variability due to sampling error.
The prediction interval can be thought of as the extent of var-
iability in treatment effects that would be observed if sam-
pling error were ignored (or the new studies were all
infinitely large).

Fig. 4B demonstrates that power will not increase
markedly for trials with sample sizes larger than 2,000
because the region of statistical significance is still rela-
tively ‘‘thin’’ for smaller SEs compared with the range of



Fig. 4. A. Significance contours for the random-effects meta-analysis: antibiotics vs. control for the common cold to alleviate symptoms by 7 days [4].
B. Significance contours for the same data set as used in Fig. 4A, close up restricting y-axis scale range [4]. C. Same data set as Fig. 4A, B, plotting
results from a simulated study overlaying the heterogeneity contours [4].
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plausible odds ratios in a new trial. Similarly, a large
proportion of the prediction interval is not included
within the shaded region. Thus, in this example, the
power of a new study will be low irrespective of its sam-
ple size; a common finding using this approach to sample
size estimation.

Fig. 4C plots the same results from the simulation with
the heterogeneity contours. This illustrates how the extent
of heterogeneity might change given a new study with
2,000 patients in each arm. From the graph, we can see that
most of the simulated studies fall within a region with I2
less than 70%, indicating that the I2 statistic would likely
change from the current value of 38% to something be-
tween 25.6% (the minimum value derived elsewhere, see
Appendix 2.2 on the journal’s Web site at www.jclinepi.
com) and 70%. In this case, the change in heterogeneity
may not have a profound effect on the analysis strategy
and clinical conclusions because heterogeneity is already
reasonably high and a random-effects model is currently
being used.

Fig. 5 shows results from a meta-analysis looking at an
opioid antagonist (naltrexone) compared with placebo in

http://www.jclinepi.com
http://www.jclinepi.com
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patients receiving nicotine replacement therapy for smok-
ing cessation (with smoking abstinence as outcome) [24].
This meta-analysis contains three trials and the current
fixed-effect meta-analysis estimate is 1.24, which is not sta-
tistically significant at the 5% level. The heterogeneity var-
iance and I2 are both estimated to be 0 for this data set.
Fig. 5 presents a funnel plot of these data, including the sta-
tistical significance contours described in Section 3.1.
Some additional features have been included, which help
to assess the potential impact of further studies with varying
sample sizes. The red lines, representing a pseudo 95%
confidence interval for the meta-analysis under the fixed-
effect assumption provide a region in which approximately
95% of new studies might lie if the fixed-effect model were
true (as in Fig. 1A). Additional contours have been in-
cluded to illustrate equivalent sample sizes corresponding
to different risk ratio and SE combinations. These are gen-
erated assuming the risk of an event in the control arm in
a new study is equal to the average of the risks within the
existing studies and the allocation ratio between arms is
1:1. Contours are given for sample sizes of 50, 100, 200,
400, and 800 patients per arm. The curvature of these con-
tours is because of the inherent correlation between an es-
timated risk ratio and its estimated SE.

Collectively, these features help to illustrate how likely
a change in statistical significance might be given an addi-
tional study with fixed sample size. For example, a sample
size of 50 patients in each arm has little chance of confirm-
ing that naltrexone is more effective than placebo because
the dark gray region indicating a significant benefit for nal-
trexone falls outside the pseudo 95% confidence interval for
Fig. 5. Significance contours for fixed-effects meta-analysis: opioid
antagonists for smoking cessation, naltrexone, and NRT (nicotine re-
placement therapy) is compared with a placebo and NRTdincluding
additional sample size-related overlays [24].
this particular sample size. Hence, if the fixed-effect as-
sumption is reasonable, then a trial with sample size 50 pa-
tients in each arm will have close to zero power. As the
sample size of an additional study increases, the dark gray
significance region falls within the pseudo 95% region, cor-
responding to an increase in power. Based on the graph,
a sample size of approximately 800 per arm would be
needed to obtain 50% power (i.e., approximately 50% of
the pseudo 95% confidence interval is in the shaded area
for this sample size). This sample size is much larger than
any existing study. In summary, the graph suggests that al-
though a statistically significant meta-analytic result is
achievable, only a very large trial would have substantial
power. The ability to draw such a conclusion from a single
plot means that computationally expensive simulations to
calculate power are not required.

The sample size calculations here are based on a fixed-
effect meta-analysis model. Although it is theoretically
possible to produce corresponding pseudo 95% intervals for
a random-effects model, these are numerically complex to
construct.When there is nowithin-studyerror, that is, for a the-
oretical study of infinite size, the width of the interval will be
equal to the 95% prediction interval. Hence, this interval can
be used as a guide in a random-effects context, although it
ignores sampling error in the new study and hence is narrower
than the ‘‘true’’ interval for finite sample sizes.
5. Discussion

We have proposed a flexible framework for illustrating
the potential impact of a new study on a meta-analysis
through the use of regions and contours on funnel plots.
The framework has multiple applications, and choices
around which to implement will be specific to the context.
In addition to the contexts outlined in Section 4, our graph-
ical ideas can be used to prioritize updates of meta-analyses
based on the likelihood of a change in statistical significance.
Indeed, the burden of continuously updating portfolios of
meta-analyses, as currently undertaken by institutions in-
cluding the Cochrane Collaboration, has been highlighted
[5,25,26]. If statistical significance contour plots such as
those in Section 3.1, were produced routinely for such port-
folios of meta-analyses, and searches for relevant new stud-
ies were kept up to date, then a quick assessment could be
made as to whether the new evidence is likely to change
the conclusions of the existing review. An update prioritiza-
tion strategy could be informed by these assessments,
making the process of updating reviews more efficient.
Therefore, we believe our plots are potentially useful to
1) meta-analysts producing systematic reviews; 2) trialists
considering the design of future randomized controlled tri-
als; and 3) editors of systematic review portfolios.

Our proposals have inherent limitations. First, the statisti-
cal significance contours do not currently account for a poten-
tial change in the statistical model (i.e., between fixed and
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random effects) if an additional study increases or (perhaps
more rarely) decreases the overall level of heterogeneity.
For this reason, we recommend that statistical significance
contours under the fixed-effect model are presentedwith cau-
tion; the random-effects model can be considered the more
flexible model. Secondly, our proposals cannot currently be
generalized to multiple additional studies. Generalizing the
features would require one or more assumptions that are un-
likely to hold, such as all additional studies having identical
effects and SEs. Lastly, the graphical features are built on
inverse-variance weighted average methods. Although these
are probably the most commonly implemented, other
common methods used for binary outcome data, such as
ManteleHaenszel methods or logistic regression, do not fit
within the framework of a two-dimensional graph as they
take into account the whole array of cell frequencies. Never-
theless, we believe that overlaying contours on funnel plots
can providevaluable insights into the robustness and implica-
tions of a meta-analysis, particularly with regard to how
a new study might impact on it.
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