123 research outputs found

    Compressive Earth Observatory: An Insight from AIRS/AMSU Retrievals

    Full text link
    We demonstrate that the global fields of temperature, humidity and geopotential heights admit a nearly sparse representation in the wavelet domain, offering a viable path forward to explore new paradigms of sparsity-promoting data assimilation and compressive recovery of land surface-atmospheric states from space. We illustrate this idea using retrieval products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) on board the Aqua satellite. The results reveal that the sparsity of the fields of temperature is relatively pressure-independent while atmospheric humidity and geopotential heights are typically sparser at lower and higher pressure levels, respectively. We provide evidence that these land-atmospheric states can be accurately estimated using a small set of measurements by taking advantage of their sparsity prior.Comment: 12 pages, 8 figures, 1 tabl

    Holographic Magnetic Star

    Full text link
    A warm fermionic AdS star under a homogeneous magnetic field is explored. We obtain the relativistic Landau levels by using Dirac equation and use the Tolman-Oppenheimer-Volkoff (TOV) equation to study the physical profiles of the star. Bulk properties such as sound speed, adiabatic index, and entropy density within the star are calculated analytically and numerically. Bulk temperature increases the mass limit of the AdS star but external magnetic field has the opposite effect. The results are partially interpreted in terms of the pre-thermalization process of the gauge matter at the AdS boundary after the mass injection. The entropy density is found to demonstrate similar temperature dependence as the magnetic black brane in the AdS in certain limits regardless of the different nature of the bulk and Hawking temperatures. Total entropy of the AdS star is also found to be an increasing function of the bulk temperature and a decreasing function of the magnetic field, similar behaviour to the mass limit. Since both total entropy and mass limit are global quantities, they could provide some hints to the value of entropy and energy of the dual gauge matter before and during the thermalization.Comment: 39 pages, 14 figures, 1 table, comments and references added, to appear in JHE

    Holographic Dark Information Energy

    Full text link
    Landauer's principle and the Holographic principle are used to derive the holographic information energy contribution to the Universe. Information energy density has increased with star formation until sufficient to start accelerating the expansion of the universe. The resulting reduction in the rate of star formation due to the accelerated expansion may provide a feedback that limits the information energy density to a constant level. The characteristics of the universe's holographic information energy then closely match those required to explain dark energy and also answer the cosmic coincidence problem. Furthermore the era of acceleration will be clearly limited in time.Comment: 12 pages, 2 figure

    Effective action for the order parameter of the deconfinement transition of Yang-Mills theories

    Full text link
    The effective action for the Polyakov loop serving as an order parameter for deconfinement is obtained in one-loop approximation to second order in a derivative expansion. The calculation is performed in d≄4d\geq 4 dimensions, mostly referring to the gauge group SU(2). The resulting effective action is only capable of describing a deconfinement phase transition for d>dcr≃7.42d>d_{\text{cr}}\simeq 7.42. Since, particularly in d=4d=4, the system is strongly governed by infrared effects, it is demonstrated that an additional infrared scale such as an effective gluon mass can change the physical properties of the system drastically, leading to a model with a deconfinement phase transition.Comment: 23 pages, 4 figures, minor improvements, version to appear in PR

    Path-integral quantization of Galilean Fermi fields

    Full text link
    The Galilei-covariant fermionic field theories are quantized by using the path-integral method and five-dimensional Lorentz-like covariant expressions of non-relativistic field equations. Firstly, we review the five-dimensional approach to the Galilean Dirac equation, which leads to the Levy-Leblond equations, and define the Galilean generating functional and Green's functions for positive- and negative-energy/mass solutions. Then, as an example of interactions, we consider the quartic self-interacting potential λ(ιˉι)2{\lambda} (\bar{\Psi} {\Psi})^2, and we derive expressions for the 2- and 4-point Green's functions. Our results are compatible with those found in the literature on non-relativistic many-body systems. The extended manifold allows for compact expressions of the contributions in (3+1)(3+1) space-time. This is particularly apparent when we represent the results with diagrams in the extended (4+1)(4+1) manifold, since they usually encompass more diagrams in Galilean (3+1)(3+1) space-time.Comment: LATEX file, 27 pages, 8 figures; typos in the journal version are removed, equation (1) in Introduction is correcte

    On Charged Black Holes in Anti-de Sitter Space

    Full text link
    We study the region inside the event horizon of charged black holes in five dimensional asymptotically anti-de Sitter space, using as a probe two-sided correlators which are dominated by spacelike geodesics penetrating the horizon. The spacetimes we investigate include the Reissner-Nordstrom black hole and perturbations thereof. The perturbed spacetimes can be found exactly, enabling us to perform a local scan of the region between the inner and outer horizons. Surprisingly, the two-sided correlators we calculate seem to be geometrically protected from the instability of the inner horizon.Comment: 1+37 pages, 20 ps and eps figures, LaTeX. References added and changes made to section

    Lattice gauge theory with baryons at strong coupling

    Get PDF
    We study the effective Hamiltonian for strong-coupling lattice QCD in the case of non-zero baryon density. In leading order the effective Hamiltonian is a generalized antiferromagnet. For naive fermions, the symmetry is U(4N_f) and the spins belong to a representation that depends on the local baryon number. Next-nearest-neighbor (nnn) terms in the Hamiltonian break the symmetry to U(N_f) x U(N_f). We transform the quantum problem to a Euclidean sigma model which we analyze in a 1/N_c expansion. In the vacuum sector we recover spontaneous breaking of chiral symmetry for the nearest-neighbor and nnn theories. For non-zero baryon density we study the nearest-neighbor theory only, and show that the pattern of spontaneous symmetry breaking depends on the baryon density.Comment: 31 pages, 5 EPS figures. Corrected Eq. (6.1

    Non-state actors in hybrid global climate governance: justice, legitimacy, and effectiveness in a post-Paris era

    Get PDF
    In this article, we outline the multifaceted roles played by non-state actors within the United Nations Framework Convention on Climate Change and place this within the wider landscape of global climate governance. In doing so, we look at both the formation and aftermath of the 2015 Paris Agreement. We argue that the Paris Agreement cements an architecture of hybrid multilateralism that enables and constrains non-state actor participation in global climate governance. We flesh out the constitutive features of hybrid multilateralism, enumerate the multiple positions non-state actors may employ under these conditions, and contend that non-state actors will play an increasingly important role in the post-Paris era. To substantiate these claims, we assess these shifts and ask how non-state actors may affect the legitimacy, justice, and effectiveness of the Paris Agreement

    Phases and Residual Gauge Symmetries of Higgs Models

    Get PDF
    After elimination of the redundant variables, gauge theories may still exhibit symmetries associated with the gauge fields. The role of these residual gauge symmetries is discussed within the Abelian Higgs model and the Georgi-Glashow model. In the different phases of these models, these symmetries are realized differently. The characteristics of emergence and disappearance of the symmetries are studied in detail and the implications for the dynamics in Coulomb, Higgs, and confining phases are discussed.Comment: 30 pages, LaTeX with amsmath macros; updated to include minor corrections in proof; email correspondence to J.W. Negele, [email protected]
    • 

    corecore