50 research outputs found

    Organizing the Sharing Economy Through Experiments: Framing and taming as onto-epistemological work

    Get PDF
    Prior work on performativity has illustrated how theories intervene in economic organizing. We expand this body of research by studying how concepts, and particularly those that are loosely defined and/or not widely understood, provoke their own realities through experiments. We examine how different experimental set-ups allow these concepts to be seized by a multitude of actors all wishing to instantiate worlds in their own interests, and how they potentially open up multiple competing realities as a result. We follow the concept of mobility-as-a-service as it mobilizes various experiments across public and private realms in Stockholm and Dublin, and we analyse how specific types of experiment co-produce epistemic and ontological work. Our results illustrate how different experimental designs can be conducive in taming and/or framing ambiguous concepts through interconnected processes of such onto-epistemological work. This highlights the distributed and relational and also the ‘provocative’ facets of performing ambiguous concepts through experiments. We discuss the consequences of these insights for how we think about scaling from experiments to broader socio-economic realities.European Commission Horizon 2020Torsten Söderbergs Foundatio

    A neuro-inspired system for online learning and recognition of parallel spike trains, based on spike latency and heterosynaptic STDP

    Full text link
    Humans perform remarkably well in many cognitive tasks including pattern recognition. However, the neuronal mechanisms underlying this process are not well understood. Nevertheless, artificial neural networks, inspired in brain circuits, have been designed and used to tackle spatio-temporal pattern recognition tasks. In this paper we present a multineuronal spike pattern detection structure able to autonomously implement online learning and recognition of parallel spike sequences (i.e., sequences of pulses belonging to different neurons/neural ensembles). The operating principle of this structure is based on two spiking/synaptic neurocomputational characteristics: spike latency, that enables neurons to fire spikes with a certain delay and heterosynaptic plasticity, that allows the own regulation of synaptic weights. From the perspective of the information representation, the structure allows mapping a spatio-temporal stimulus into a multidimensional, temporal, feature space. In this space, the parameter coordinate and the time at which a neuron fires represent one specific feature. In this sense, each feature can be considered to span a single temporal axis. We applied our proposed scheme to experimental data obtained from a motor inhibitory cognitive task. The test exhibits good classification performance, indicating the adequateness of our approach. In addition to its effectiveness, its simplicity and low computational cost suggest a large scale implementation for real time recognition applications in several areas, such as brain computer interface, personal biometrics authentication or early detection of diseases.Comment: Submitted to Frontiers in Neuroscienc

    Towards Neuro-Inspired Electronic Oscillators Based on The Dynamical Relaying Mechanism

    Get PDF
    Electronic oscillators are used for the generation of both continuous and discrete signals, playing a fundamental role in today’s electronics. In both contexts, these systems require stringent performances such as spectral purity, low phase noise, frequency and temperature stability. In state of the art oscillators the preservation of some of these aspects is jeopardized by specific critical issues, e.g., the sensitivity to load capacitance or the component aging over time. This leaves room for the search of new technologies for their realization. On the other hand, in the last decade electronics has been influenced by a growing number of neuro-inspired mechanisms, which allowed for alternative techniques aimed at solving some classical critical issues.In this paper we present an exploratory study for the development of electronic oscillators based on the neuro-inspired mechanism dynamical relaying, which relies on a structure composed of three delay coupled units (as neurons or even neuron populations) able to resonate and self-organise to generate and maintain a given rhythm with great reliability over a considerable parameter range, showing robustness to noise. We used the recent leaky integrated and fire with latency (LIFL) as neuron model. We have initially developed the mathematical model of the neuro-inspired oscillator, and implemented it using Matlab®; then, we have realized the schematic of such system in PSpice®. Finally, the model has been validated to verify whether it observes the fundamental properties of the dynamical relaying mechanisms described in computational neuroscience studies, and if the circuit implementation presents the same behaviour of the mathematical model.Validation results suggest that the dynamical relaying mechanism can be proficuously taken in consideration as alternative strategy for the design of electronic oscillators

    Hardware design of LIF with Latency neuron model with memristive STDP synapses

    Full text link
    In this paper, the hardware implementation of a neuromorphic system is presented. This system is composed of a Leaky Integrate-and-Fire with Latency (LIFL) neuron and a Spike-Timing Dependent Plasticity (STDP) synapse. LIFL neuron model allows to encode more information than the common Integrate-and-Fire models, typically considered for neuromorphic implementations. In our system LIFL neuron is implemented using CMOS circuits while memristor is used for the implementation of the STDP synapse. A description of the entire circuit is provided. Finally, the capabilities of the proposed architecture have been evaluated by simulating a motif composed of three neurons and two synapses. The simulation results confirm the validity of the proposed system and its suitability for the design of more complex spiking neural network

    a computational approach for the understanding of stochastic resonance phenomena in the human auditory system

    Get PDF
    Stochastic resonance (SR) is a nonlinear phenomenon by which the introduction of noise in a system causes a counterintuitive increase in levels of detection performance of a signal. SR has been extensively studied in different physical and biological systems, including the human auditory system (HAS), where a positive role for noise has been recognized both at the level of peripheral auditory system (PAS) and central nervous system (CNS). This dualism regarding the mechanistic underpinnings of the RS phenomenon in the HAS is confirmed by discrepancies among different experimental studies and reflects on a disagreement about how this phenomenon can be exploited for the improvement of prosthesis and aids devoted to hypoacusic people. HAS is one of the human body's most complex sensory system. On the other hand, SR involves system nonlinearities. Then, the characterization of SR in the HAS is very challenging and many efforts are being made to characterize this mechanism as a whole. Current computational modelling tools make possible to investigate the phenomena separately in the CNS and in the PAS, then simplifying the analysis of the involved mechanisms. In this work we present a computational model of PAS supporting SR, that shows improved detection of sounds when input noise is added. As preparatory step, we provided a test signal to the system, at the edge of the hearing threshold. As next step, we repeated the experiment adding background noise at different intensities. We found an increase of relative spike count in the frequency bands of the test signal when input noise is added, confirming that the maximum value is obtained under a specific range of added noise, whereas further increase in noise intensity only degrades signal detection or information content

    towards neuro inspired electronic oscillators based on the dynamical relaying mechanism

    Get PDF
    Electronic oscillators are used for the generation of both continuous and discrete signals, playing a fundamental role in today's electronics. In both contexts, these systems require stringent performances such as spectral purity, low phase noise, frequency and temperature stability. In state of the art oscillators the preservation of some of these aspects is jeopardized by specific critical issues, e.g., the sensitivity to load capacitance or the component aging over time. This leaves room for the search of new technologies for their realization. On the other hand, in the last decade electronics has been influenced by a growing number of neuro-inspired mechanisms, which allowed for alternative techniques aimed at solving some classical critical issues. In this paper we present an exploratory study for the development of electronic oscillators based on the neuro-inspired mechanism dynamical relaying , which relies on a structure composed of three delay coupled units (as neurons or even neuron populations) able to resonate and self-organise to generate and maintain a given rhythm with great reliability over a considerable parameter range, showing robustness to noise . We used the recent leaky integrated and fire with latency (LIFL) as neuron model. We have initially developed the mathematical model of the neuro-inspired oscillator , and implemented it using Matlab®; then, we have realized the schematic of such system in PSpice®. Finally, the model has been validated to verify whether it observes the fundamental properties of the dynamical relaying mechanisms described in computational neuroscience studies, and if the circuit implementation presents the same behaviour of the mathematical model. Validation results suggest that the dynamical relaying mechanism can be proficuously taken in consideration as alternative strategy for the design of electronic oscillators
    corecore