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Abstract— Electronic oscillators are used for the generation of both continuous and discrete signals, playing a fundamental role in 
today’s electronics. In both contexts, these systems require stringent performances such as spectral purity, low phase noise, frequency 
and temperature stability. In state of the art oscillators the preservation of some of these aspects is jeopardized by specific critical 
issues, e.g., the sensitivity to load capacitance or the component aging over time. This leaves room for the search of new technologies 
for their realization. On the other hand, in the last decade electronics has been influenced by a growing number of neuro-inspired 
mechanisms, which allowed for alternative techniques aimed at solving some classical critical issues. In this paper we present an 
exploratory study for the development of electronic oscillators based on the neuro-inspired mechanism dynamical relaying, which 
relies on a structure composed of three delay coupled units (as neurons or even neuron populations) able to resonate and self-organise 
to generate and maintain a given rhythm with great reliability over a considerable parameter range, showing robustness to noise. We 
used the recent leaky integrated and fire with latency (LIFL) as neuron model. We have initially developed the mathematical model of 
the neuro-inspired oscillator, and implemented it using Matlab®; then, we have realized the schematic of such system in PSpice®. 
Finally, the model has been validated to verify whether it observes the fundamental properties of the dynamical relaying mechanisms 
described in computational neuroscience studies, and if the circuit implementation presents the same behaviour of the mathematical 
model. Validation results suggest that the dynamical relaying mechanism can be proficuously taken in consideration as alternative 
strategy for the design of electronic oscillators. 
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I. INTRODUCTION  

Electronic oscillators are widely used in many 
electronic devices, for the generation of both sinusoidal and 
discrete signals [1]. The preservation of some of their 
characteristics over time, as spectral purity, low phase noise, 
frequency and temperature stability, is threatened by specific 
critical issues, e.g., the component aging [2-5]. In  addition, 
the presence of several cores in modern central processing 
units (CPUs) brings out as new problem the synchronization 
between them [6]. This leaves room for the search of new 
technologies for the realization of  electronics oscillators, 
and the exploration of new synchronization strategies. On 
the other hand, during the last decade electronics has been 
influenced by a growing number of biologically-inspired 

mechanisms, which allowed for alternative techniques aimed 
at solving critical issues (e.g., [7],[8]). 

The dynamical relaying mechanism [9]-[11] is gaining a 
growing interest in the field of computational neuroscience. 
It relies on a specific network motif based on three delay 
coupled nodes, e.g., neurons or neuronal groups, and allows 
to generate oscillations with constant frequency and high 
robustness with respect to parameter mismatch and system 
noise [12]. Such network motif is ubiquitous in different 
areas, like brain-, social-, or information centric-networks 
[9],[12]-[15]. Previous studies regarding neural computation 
show that a pervasive dynamical regime is established in 
structures of this type, where outer elements of the chain are 
phase locked at 0-lag, and the middle one acts as a 
dynamical relay element between the other two [10],[16].  
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Fig.1: Basic structure for the dynamical relying mechanism, composed of 
three delay coupled oscillating units. Depending on the delay time and 
coupling strength (w0, λ0), three synchrony modes appear prominently: a) 
driven synchrony (where the central pulse is in antiphase with the one of the 
outer oscillators), b) slave synchrony (where the central pulse is anticipated), 
c) pacemaker synchrony (where the central pulse is postponed); the higher 
SQ has been reported in the driven synchrony regime (see [17]). 

 
Depending on the coupling strength and the delay among 

the nodes, different synchronization regimes can appear with 
such configuration. Among the various authors that have 
studied this mechanism, Viryiopase et al. [17] performed 
extensive simulations using phase oscillators and spiking 
neurons as nodes, arriving to the identification of three main 
different synchronization regimes: driven synchrony, slave 
synchrony and pacemaker synchrony, depending on the 
position of the signal produced by the relay element 
compared to the external ones (i.e., central, left, and right 
respectively, see fig.1).  

The authors evaluate the precision of the structure through 
the synchronization quality (SQ) index, that reflects the 
fraction of initial random phase combinations of the three 
nodes that lead to stable and synchronous firing of the outer 
ones (|Δte1te3| <0.02 times the oscillation period).  

This metric is of particular importance because, since both 
of the outer nodes are afferent to the central one, in such 
structural symmetry their synchronization is an index of 
stability of the overall structure. Among the three regimes, 
the driven synchrony regime has been shown to be an 
asymptotically stable mode, characterized by a SQ up to 
100%,  for a very large range of system parameters [17], 
which makes us consider the driven synchrony the most 
interesting regime for this work because it opens new 
scenarios in terms of fault tolerance and robustness to noise. 

To reproduce this phenomenon, we have built the neuro-
inspired system in form of a spiking neural network (SNN). 
The SNN that we implemented is based on the biologically 
plausible leaky integrate and fire with latency (LIFL) neuron 
model [18]-[22]. Firstly, we implemented the system 
equations in Matlab®; then, we have realized the schematic 
of such system in PSpice®, exploiting a circuit previously 
developed by our group [23],[24]. 

Finally, the model has been validated to verify whether 1) 
it observes the fundamental properties of the dynamical 
relaying mechanisms described in computational 
neuroscience studies, and 2) if the circuit implementation 
presents the same behaviour of the mathematical model. 

 

II. MATERIAL AND METHOD 

A. Large-scale synchronization phenomena and 
organization of brain rhythms in the brain seem to be 
supported by the dynamical relaying mechanism 

In the 1920s Hans Berger performed the first 
electroencephalogram in history and discovered that the 
brain was a generator of oscillations: synchronized rhythmic 
patterns of electrical activity produced by neurons, spinal 
cord, and autonomic nervous system. Brain oscillations have 
been traditionally categorized into five bands of frequency: δ 
(0.5-3.5 Hz), θ (3.5-7.5 Hz), α (7.5-12 Hz), β (12-30 Hz) and 
γ (>30 Hz) [25]-[27]. Neuronal rhythms arise from the 
interaction of multiple irregularly firing neurons within a 
brain structure or between different brain structures, and 
reflect competition between excitation and inhibition 
processes. Therefore, they can be generated by different 
mechanism in different structures, and the contribution of a 
specific frequency relays on the function of the brain system 
that supports in [25].  

The dynamical relaying has gathered great interest as a 
candidate mechanism for long-range zero-lag 
synchronization mechanism between different brain areas, 
mediated by a third (relay) node (e.g. cortico-thalamo-
cortical circuits), robust to a broad range of conduction 
delays and cell types [10]. In addition, recent literature in the 
field of neuroscience depicts it as the responsible of the 
cross-frequency-coupling in the brain [11], i.e., the 
coordination among different rhythms. 

Synchronization phenomena among electronic circuits 
whose dynamics is relayed by a third parameter-matched 
circuit have been already discussed in literature (see [16]). 
The allaged importance of the dynamical relaying 
mechanism suggests its use for the realization of neuro-
inspired devices. 

B. Mathematical models of the dynamic relaying oscillator 
realized in this study and its implementation in Matlab 

LIFL neuron model is similar to the classical leaky 
integrate and fire,  but it contemplates the presence of an 
important neurocomputational feature, called spike latency 
(see fig.2), which characterizes the neuron behavior in the 
suprathreshold region: when its internal state S (i.e., the 
membrane potential) reaches the spiking threshold Sth, the 
firing is not instantaneous, but it occurs after a state-
dependent continuous time delay tf  (i.e., the spike latency): 
 

 tf = 1 / (S -1)   (1) 

 

 
 

Fig.2: Spike latency curve, i.e., graphical representation of equation (1)  
(see [18]). 
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Then, the LIFL neuron can be characterized by a voltage-
like state variable f [0, ∞]. When exposed to a DC input, it 
behaves as pulse generator, which its cycle (LIFL cycle, LC) 
is characterized by three different phases: its internal state 
increases monotonically, passing for the "passive mode" (tpas) 
and then for the "active mode" (tact) phases, where it 
terminates with the generation of a spike (see fig.3). The 
state variable is subsequently reset to zero, where it stands 
for an interval known as absolute refractory period (tarp), and 
then the cycle repeats.  

 
S = Sa + PrPw – Ld Δt , for  S < Sth (2) 

S = Sa + PrPw + [(Sa – 1)2Δt / (Sa – 1)2Δt] , for  S ≥ Sth (3) 
 
In equations (2)–(3), Sa represents the previous state, Ld 

the subthreshold linear decay, and Δt is the temporal 
difference between two consecutive incoming spikes. When 
S ≥ Sth (suprathreshold region), the neuron becomes active 
and it is ready to produce a spike, remaining still sensitive to 
incoming spikes. Thus, as time advances and new spikes 
arrive, the state S is properly increased, and tf is evaluated. In 
this region, for each new state the bijective relationship (1) is 
evaluated, leading to equation (3) [22]. 

 
Fig.3: Cicle of the LIFL neuron when excited by a DC current of sufficient 
value. The internal state can be expressed as function of the phase variable 
such that φ [0, LC] → f [0,∞].  
 

 
 
Fig.4: Schematic of the overall network model, in the driven synchrony 
regime 
 

In order to synthesize the overall network, we have taken 
in account the ideal conditions to obtain driven synchrony 

regime, i.e., that the period of all oscillators is twice the 
conduction delay (see [17]). We have tuned the structure as 
follows: 1) we adjusted the DC input to obtain the desired 
period for LC; 2) we set W0 sufficiently high to achieve the 
entrainment among the groups, but at the same time small 
enough not to generate a significant variation of the period 
LC; 3) we set λ0 = LC / 2 to achieve the desired driven 
synchrony regime (see fig.4). We implemented the structure 
in Matlab®, using the LIFL equations described in [22]. 

In the model we have adimensional quantities. We finally 
arrived, as ideal values for the regime of interest, to LC = 10, 
λ0 = 5 and W0 = 0.15. 

We have executed a battery of 900 simulations in the 
neighborhood of the parameters λ0 and W0 and analyzed the 
results. All the results obtained are displayed in graphical 
form. 

C. Framework for PSpice simulations and validation of the 
circuit properties 

In this phase, we have generated the dynamical relay 
model with Orcad PSpice, consisting in three LIFL neurons 
connected with delay, using the implementation of the LIFL 
neuron presented in [23]. The neuron is composed of 8 
logical subsystems (fig.5): 
1. Integrator circuit (I): composed of the input stage of an 

OTA; 
2. Internal state (IS): RC group;  
3. Minimum Threshold (mT): input stage of a differential 

amplifier; 
4. Non Linear Element (NLE): common-source amplifiers, 

peak detectors (diode and capacitor), shunt, and voltage 
translators; 

5. Latency Generation (LG): ramp generator, a monostable 
and an adder; 

6. Maximum Threshold (MT): input stage of a differential 
amplifier; 

7. Pulse Generator (PG): monostable and an output buffer;  
8. Refractory (R): peak detector with loss (diode - capacitor 

- resistor) and a buffer. 
 
We have sized the circuit in order to obtain a period of 40 

μs, in the driven synchrony regime. From this system we 
have obtained the netlist with the signals that we want to 
monitor (i.e., coupling delay and weight). Once the netlist of 
the system saved in a text file is obtained, we proceeded to 
modify it with a Matlab script in the following way: the 
netlist file generated first read by Matlab, the value of the 
variables we want to update are written in order to obtain a 
new netlist with the values to simulate (yellow block of 
fig.6). Subsequently, PSpice is called from Matlab with the 
new modified netlist as argument (green block). After the 
simulation, we process the results (dark blue). The 
simulations continue until all the possible combinations of 
the variables we want to simulate have been analyzed  (cyan 
block). Finally, after the last step, all the results obtained are 
displayed in graphical form (see fig.6).  

For the simulated circuit we arrived to the following set of 
ideal values for the regime of interest, LC = 40 us, λ0 = 20 μs 
and W0 = 0.15% of the Sth. For both Matlab and PSpice sets 
of simulations, SQ has been evaluated over 10 trials for each 
combination of delay and weight (see fig.7).  
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Fig.5: Scheme of the neuron circuit. I: integrator circuit; IS: internal state block; mT: minimum threshold block; NLE: non-linear element block; LG: latency 
generation block; MT: maximum threshold block; PG: pulse generator block; R: refractory block (modified from [24]) 

 

III.  RESULTS AND DISCUSSION 

Simulation results confirm that the LIFL-based model, 
when in driven synchrony regime, preserve reliability for a 
quite large range of the parameters, as described in [17], and 
that the circuit implementation accurately emulates the 
behaviour of the mathematical model.  

This suggests that the dynamical relaying mechanism can 
be proficiently taken in consideration as alternative strategy 
for the design of electronic oscillators. Interestingly, 
Viriyopase et al. [17] have shown that in these networks the 
stability is facilitated when spike timing dependent plasticity 
(STDP) is implemented in the synapses, which is also 
capable to convert slave synchrony to driven synchrony, and 
thus to expand the possibility of reaching such a stable 
regime. This suggests for future works the realization of the 
dynamical relaying motif with plastic synapses [28]. 

 

 
Fig.6: Pipeline of the implemented method for the validation of the circuit 

Neural networks are being used today for a plenty of 
application, ranging from classification [29],[30], prediction  
[31]-[34], or optimization [35] problems, as well as for the 
emulation of brain dynamics [36],[37]. Considering the latter 
context,  the dynamical relaying mechanism has been 
reproduced with larger neural networks, where single 
neurons are replaced by neuron populations, and links are 
replaced by bundles of connections [10],[12]. These aspects 
open an interesting scenario for the hardware redundancy 
and then for the development of fault tolerant devices. 

 
a) 

 
b) 

Fig.7: SQ obtained from the model, varying the free parameters in the 
neighbourhood of the ideal set of values: a) Matlab simulation; b) PSpice 
simulation . 
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IV.  CONCLUSIONS 

In this paper we have presented the proof-of-concept for 
an electronic oscillator based on the neuro-inspired 
mechanism “dynamical relaying”, which relies on a structure 
composed of three delay coupled oscillating units (as 
neurons or even neuron populations) able to resonate and 
self-organise to generate and maintain a given rhythm with 
great reliability over a considerable parameter range. 
Although the same structure supports different 
synchronization regimes, our work has been pointed to one 
of these, the so-called driven synchrony regime (where the 
central node oscillates in antiphase with respect to the outer 
nodes), because it is asintotically stable [17], then suitable 
for many scenarios. Studies in the field of computational 
neuroscience have shown that with this kind of motif we can 
even generate oscillations composed of different frequencies 
[12], that leave room for the realization of resonant multi-
frequency oscillators (see [38]), based on the dynamical 
relaying mechanism. The possibility of using this 
mechanism for multirhythmic oscillators, together with the 
intrinsic bidirectionality between the central and the external 
nodes, suggests an integration into consumer, networking 
and industrial fields, as for example, security access 
algorithms for bidirectional data transmissions [39],[40].  
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