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Abstract

The thalamus is a central brain structure that serves as a relay station for sensory inputs

from the periphery to the cortex and regulates cortical arousal. Traditionally, it has been

regarded as a passive relay that transmits information between brain regions. However,

recent studies have suggested that the thalamus may also play a role in shaping functional

connectivity (FC) in a task-based context. Based on this idea, we hypothesized that due to

its centrality in the network and its involvement in cortical activation, the thalamus may also

contribute to resting-state FC, a key neurological biomarker widely used to characterize

brain function in health and disease. To investigate this hypothesis, we constructed ten in-

silico brain network models based on neuroimaging data (MEG, MRI, and dwMRI), and sim-

ulated them including and excluding the thalamus. and raising the noise into thalamus to

represent the afferences related to the reticular activating system (RAS) and the relay of

peripheral sensory inputs. We simulated brain activity and compared the resulting FC to

their empirical MEG counterparts to evaluate model’s performance. Results showed that a

parceled version of the thalamus with higher noise, able to drive damped cortical oscillators,

enhanced the match to empirical FC. However, with an already active self-oscillatory cortex,

no impact on the dynamics was observed when introducing the thalamus. We also demon-

strated that the enhanced performance was not related to the structural connectivity of the

thalamus, but to its higher noisy inputs. Additionally, we highlighted the relevance of a bal-

anced signal-to-noise ratio in thalamus to allow it to propagate its own dynamics. In conclu-

sion, our study sheds light on the role of the thalamus in shaping brain dynamics and FC in

resting-state and allowed us to discuss the general role of criticality in the brain at the meso-

scale level.

Author summary

Synchrony between brain regions is an essential aspect of coordinated brain function and

serves as a biomarker of health and disease. The thalamus, due to its centrality and
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open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The dataset and code

used in this study can be found in the GitHub

repository: github.com/jescab01/

ThalamusInRSFC_2023.

https://orcid.org/0000-0003-2384-7231
https://orcid.org/0000-0003-2917-1324
https://orcid.org/0000-0002-8477-8156
https://doi.org/10.1371/journal.pcbi.1011007
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011007&domain=pdf&date_stamp=2023-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011007&domain=pdf&date_stamp=2023-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011007&domain=pdf&date_stamp=2023-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011007&domain=pdf&date_stamp=2023-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011007&domain=pdf&date_stamp=2023-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011007&domain=pdf&date_stamp=2023-08-03
https://doi.org/10.1371/journal.pcbi.1011007
https://doi.org/10.1371/journal.pcbi.1011007
http://creativecommons.org/licenses/by/4.0/
http://github.com/jescab01/ThalamusInRSFC_2023
http://github.com/jescab01/ThalamusInRSFC_2023


widespread connectivity with the cortex, is a crucial structure that may contribute to this

synchrony by allowing distant brain regions to work together. In this study, we used

computational models to investigate the thalamus’s role in generating brain synchrony at

rest. Our findings suggest that the structural connectivity of the thalamus is not its pri-

mary contribution to brain synchrony. Instead, we found that the thalamus plays a critical

role in driving cortical activity, and when it is not driving this activity, its impact on brain

synchrony is null. Our study provides valuable insights into the thalamocortical network’s

role in shaping brain dynamics and FC in resting state, laying the groundwork for further

research in this area.

Introduction

In humans, the thalamus is a nut size structure near the center of the brain that relays sensory

inputs traveling to the cortex [1], fosters cortico-cortical communication through transthala-

mic pathways [2, 3], and controls cortical arousal through the reticular activating system

(RAS) [4]. To carry out these tasks, it contains three functionally distinct parts [5]: dorsal, ven-

tral, and intralaminar. The dorsal part communicates bidirectionally with the cortex establish-

ing two schemes of information exchange [6, 7] (see Fig 1): first-order relay, in which the

thalamus receives subcortical and sensory inputs (i.e., driving inputs), relays them to the cortex

through excitatory thalamocortical cells and gets back modulatory feedback from layer 6 pyra-

midal neurons (i.e., modulatory inputs); and higher order relay, in which the thalamus receives

inputs from layer 5 pyramidal cells of a cortical region and relays them to another location in

the cortex, creating a transthalamic pathway for cortico-cortical connections [2, 3]. In the ven-

tral part, the reticular nucleus’ inhibitory neurons establish connections both with each other

and with neurons in the dorsal nuclei, to regulate and foster communication inside the thala-

mus [8, 9]. The interactions between the dorsal and ventral parts of the thalamus allow for the

generation of sustainable oscillations of neural activity, such as delta oscillations, sleep spin-

dles, and slow waves, that may propagate to the cortex and influence its dynamics [10–15].

Fig 1. Main schemes of thalamocortical interaction. A) Functionally distinct parts of the thalamus including the dorsal thalamus with its

anterior, lateral, and medial regions, the reticular nucleus as the main component of the ventral thalamus in green, and the intralaminar

nuclei in grey. B) First-order relay scheme in which the subcortical/peripheral afferences are relayed to the cortex generally to layers 3 and 4.

C) High-order relay scheme in which afferences from a cortical region are relayed to another. Coronal slices were acquired from the Big

Brain project [17] using ebrains platform.

https://doi.org/10.1371/journal.pcbi.1011007.g001
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The intralaminar part is involved in the RAS [16] delivering cholinergic and monoaminergic

neurotransmission diffusely to the cortex and controlling arousal [4].

Through these pathways, the thalamus connects to a widespread set of cortical regions [18–

20], playing a role in different psychological processes such as sleep [10, 21, 22], pain [23, 24],

memory and learning [25], attention [26–28], motor and sensory processing [9, 15, 29], and

consciousness [30–34]. This role of the thalamus has been classically depicted as a passive relay

that transfers information between brain regions [25, 35], however recent findings are chal-

lenging this view [20, 25, 36–38]. Specifically, Schmitt et al. [26] showed that the mediodorsal

thalamus was amplifying a FC pattern supporting the representation of specific task-related

rules. All the thalamocortical mechanisms described above (i.e., the dorsal relay of peripheral

sensory inputs, the transthalamic pathways for cortico-cortical communication, and the RAS

neurotransmission that activates the cortex) may contribute to define the FC in the brain. Our

study is aimed at understanding how.

FC is defined as a correlation between spatially distant neurophysiological signals [39] rep-

resenting the functional integration of psychological processes in distributed brain networks

[40]. Early neuroimaging studies were focused on revealing the activity patterns underlying

cognitive processes during task execution, using resting-state as a control condition [41]. How-

ever, later findings showed that the brain in resting-state has a rich intrinsic activity [42, 43]

related to automatic and unconscious cognitive processing [44, 45]. Since then, resting-state

FC (rsFC) has been used to characterize brain function in health and disease [46–48] usually

considering it as a static measure. More recently, this approach has been extended to capture

the temporal richness of the activity patterns in resting-state through the concept of dynamical

FC (dFC; [49, 50] which has been suggested to reflect ongoing cognitive processing and that

may be more informative of brain function and dysfunction than the static form [51–54]. Both

metrics support the characterization of healthy aging, for which a general decrease in static FC,

complemented by a slowing and less complex dFC has been shown and related to changes in

cognitive performance [55–58]. Interestingly, some authors have proposed that changes in the

thalamocortical network may contribute substantially to the disruptions in FC and cognition

during aging [59, 60]. Understanding the mechanisms that underlie and control (d)FC is an

important research question that is still undisclosed, especially in aging. Here, we hypothesize

that a similar thalamic mechanism that has been shown to be involved in defining FC during

task execution [26] might also be active in resting-state.

Computational modeling allows for the generation of in-silico versions of real brains and

personalized brain dynamics [61] employing brain network models (BNM). A BNM is based

on: a structural connectivity (SC) network derived from diffusion-weighted MRI that captures

how brain regions are wired together, and a set of neural mass models (NMM) that reproduce

the electrophysiological dynamics of each brain region. A widely studied NMM is the Jansen-

Rit (JR; [62]), a biologically-inspired model of a cortical column that implements excitatory

and inhibitory subpopulations to produce oscillatory activity. This model shows a bifurcation

over a parameter representing the strength of its inputs [63, 64] that will be used in our work

to reproduce different modes of the thalamocortical interaction. In a system, a bifurcation

occurs when a change in the value of a parameter (i.e., bifurcation parameter) produces a qual-

itative change in the behavior of the system. For the JR model, the bifurcation separates two

different states: a fixed point state, where the model behaves as a damped oscillator (prebifur-

cation), and a limit cycle state, where the model autonomously oscillates (postbifurcation).

These two states turned out to be relevant to understand our findings.

To investigate the potential contribution of the thalamus to rsFC, we built ten in-silico

BNMs based on healthy subjects’ neuroimaging data (MEG, MRI, dwMRI) using JR NMMs.

We simulated them using: 1) three SC versions (i.e., parceled thalamus, pTh; thalamus as a
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single node, Th; without thalamus, woTh) to explore the effect of both the parcellation and the

mere presence of cortico-cortical transthalamic pathways and 2) implementing a higher noisy

input to the thalamus to reproduce its participation in RAS and the presence of peripheral sen-

sory relays. We compared the simulated FC and dynamical FC (dFC) to their empirical MEG

counterparts to evaluate performance. Additionally, we performed further simulations to

explore under which conditions the thalamus contributes to the rsFC, including a control

experiment using the cortico-cerebellar network instead of the thalamocortical one, and a set

of parameter explorations over the intrinsic thalamic oscillatory behavior and the magnitude

of the implemented noise. Our results showed that a limited set of driving nodes leading corti-

cal activity was a plausible scenario in rsFC, where the thalamus would play a major role due

to its nature: involved in the RAS system, and projecting sensory relays. These results contrib-

ute to the understanding of the basic principles of whole-brain function in health and disease,

and to enrich the current picture of criticality behavior in the brain.

Results

The thalamus impacts rsFC through its afferences

To explore the role of the thalamus in rsFC, we used two features of our in-silico BNMs: its

structure, by simulating three different SC versions per subject (pTh, Th, woTh), and the

NMMs noisy input by implementing higher than cortex thalamic noise (ηth = [0.022, 2.2x10-8],

ηcx = [2.2x10-8]) to represent thalamic RAS system and peripheral first-order relays. We used

the coupling parameter (g) to scale connectivity weights looking for the best match to empirical

rsFC (i.e., the working point), as usual in whole-brain modeling [65–68]. Given that g acts as a

bifurcation parameter, the simulated activity could be categorized into two regimes: prebifurca-

tion, in which nodes operate as damped oscillators, and postbifurcation, in which nodes operate

as autonomous oscillators. We simulated 60 seconds of brain activity per model and measured

FC and dFC in the alpha band to compare to their empirical counterparts using Pearson’s cor-

relation (rPLV(α)) and Kolmogorov-Smirnov distance (KSD), respectively. We will show statisti-

cal comparisons using the best values of those metrics per subject and bifurcation side.

Results on rPLV(α) showed a significant impact for both the structure [F(2, 18) = 191.77,

Z2
g ¼ 0:77, eps = 0.55, p<0.0001], noise [F(1, 9) = 178.25, Z2

g ¼ 0:87, eps = 1, p<0.0001], and

their interaction [F(2, 18) = 172.12, Z2
g ¼ 0:77, eps = 0.55, p<0.0001] in prebifurcation. In con-

trast, in postbifurcation, we did not find significant differences for structure [F(2, 18) = 1.29,

Z2
g ¼ 0:013, eps = 0.76, p = 0.29] or the interaction [F(2, 18) = 1.74, Z2

g ¼ 0:004, eps = 0.65,

p = 0.21] while a weak effect was found for noise [F(1, 9) = 5.89, Z2
g ¼ 0:006, eps = 1,

p = 0.038].

In prebifurcation, implementing high thalamic noise raised significantly rPLV(α) values

from close to zero to rPLV(α)�0.33 for Th [W = 0, Cohen’s d = 5.09, p-corr = 0.005], and

rPLV(α)�0.45 for pTh [W = 0, Cohen’s d = 6.8, p-corr = 0.005] (see Fig 2). The resulting cor-

relation values with high noise differed significantly between the implementations of the

thalamic structure [F(2, 18)=186, Z2
g ¼ 0:87, eps = 0.53, p-corr<0.0001], and pTh showed a

global peak of rPLV(α) that unexpectedly overcame the values observed in postbifurcation in

8 out of 10 subjects (see S1 Fig) although the differences were not statistically significant

[W = 18, Cohen’s d = 0.142, p = 0.375].

Regarding dFC, the results followed a similar trend in which thalamic structure [F(2, 18) =

119.95, Z2
g ¼ 0:77, eps = 0.56, p<0.0001], the thalamic noise [F(1, 9) = 106.3, Z2

g ¼ 0:73,

eps = 1, p<0.0001] and the interaction [F(2, 18) = 111.66, Z2
g ¼ 0:77, eps = 0.55, p<0.0001]

were statistically significant factors only in prebifurcation. In that range, high thalamic noise
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enhanced performance for pTh [W = 0, Cohen’s d = 4.89, p-corr = 0.0029] showing a local

KSD(α) minimum, and also slightly for Th [W = 0, Cohen’s d = 2.5, p-corr = 0.0029] (see

Fig 2). Interestingly, we noticed that high values of KSD(α) for woTh and Th were due to

opposite underlying dFC distributions. woTh correlations were centered near r = 0 implying

that FC matrices in time changed randomly, while Th correlations were centered near r = 1

implying that FC matrices in time were quasistatic (see S2 Fig).

In summary, the inclusion of the thalamus in the model had an impact just in prebifurca-

tion range (in which nodes operate as damped oscillators), and only when implementing a

high thalamic noise. For pTh, this condition overcame the performance of any other model. In

postbifurcation range (in which nodes autonomously oscillate) the values for rPLV(α) were also

high, however, the thalamus did not show a significant impact. The slight differences observed

in the boxplots may be related to a higher number of autonomous oscillators trying to impose

Fig 2. Thalamocortical experiment. Simulations for two levels of thalamic noise (low noise in A, B, C; high noise in E, F, G), three implementations of

thalamocortical SC (in colours), and exploring the parameter space for coupling factor (g) divided into prebifurcation (g< 7 shadowed regions in B and F) and

postbifurcation (g> 7). B, F shows group averaged rPLV(α) and KSD(α) metrics. In the margins, boxplots show maximum values for those metrics per subject in

prebifurcation (A, E) and postbifurcation (C, G). D shows the averaged bifurcation diagrams consisting of the maximum and minimum voltages per simulation

for the cortex (thick line) and the thalamus (dashed line).

https://doi.org/10.1371/journal.pcbi.1011007.g002
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their own dynamics that may make it more difficult to establish stable functional interactions

between the nodes.

Structure is not the key: Comparing thalamocortical and cortico-cerebellar

networks

We wondered whether the observed improvement of rPLV(α) with high thalamic noise in prebi-

furcation could be explained by the specific characteristics of the SC pattern of the thalamus.

To test this, we performed a control experiment comparing the thalamocortical network to

another with similar properties: the cortico-cerebellar network (see Table 1). We built three

SC versions per subject: parceled cerebellum (pCer), single node cerebellum (Cer) and without

cerebellum (woCer), all of them including the thalamus parceled. We simulated them imple-

menting high noise into the cerebellum to compare the model performance to the thalamocor-

tical network.

We observed that the general trend found with the thalamocortical networks persisted.

woCer simulations showed close to zero rPLV(α) values in prebifurcation range with high noise,

while Cer and pCer increased significantly their maximum correlations [F(2, 18) = 148.39,

Z2
g ¼ 0:895, eps = 0.75, p-corr<0.0001] up to similar values obtained with the thalamocortical

network (see Fig 3). Moreover, pCer in prebifurcation also resulted in a global maximum in

rPLV(α) compared to postbifurcation values. Interestingly, Cer changed the underlying bifurca-

tion diagram of the model, moving it toward higher values of coupling. This was reflected by

the peak of rPLV(α) in higher g values.

These results suggest that the specific thalamocortical SC pattern is not a major determinant

of the thalamic contribution to rsFC.

Brain dynamics underlying each scenario

To understand the dynamics that underlie the observed values of rPLV(α) and KSD, we

extracted a simulation sample per model condition with pTh (i.e., high/low thalamic noise,

and pre- / post-bifurcation; see Fig 4).

The dynamics in the prebifurcation range with high and low noise showed 1/f pink noise

pattern. This is the result of a damped JR node processing a Gaussian noise as shown in previ-

ous literature [69, 70]. High and low noise conditions in prebifurcation could be differentiated

by their spectral powers and by the differences in FC matrices: with low noise, nodes are not

powerful enough to interact, producing a functional disconnection that was captured by the

FC and dFC matrices. In sharp contrast, in postbifurcation, nodes were self-oscillating in

alpha frequency around 10Hz. Note the similarity between high and low noise to the thalamus

in postbifurcation range, supporting the results reported in previous sections.

Table 1. Network features for the thalamus and the cerebellum.

Degree Node strength Betweenness Path Length

Global average 0.827 0.231 0.00119 1.165

Thalamus average 0.851 0.111 0.00125 1.141

Cerebellum average 0.883 0.224 0.00132 1.110

Averaged network metrics for the thalamus, the cerebellum, and the global average of all regions. Similar relation to average was observed between regions in all metrics

(degree, betweenness, and path length) except for node strength. For more details on the network analysis, see S1 Table.

https://doi.org/10.1371/journal.pcbi.1011007.t001
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Thalamic alpha propagates to the cortex within a balanced SNR

The best-performing thalamocortical model was the one in prebifurcation that integrated

high thalamic noise and pTh. Looking at its underlying dynamics, we observed that the

spectrum was showing a 1/f shape. As we are trying to reproduce MEG FC, in which a pre-

dominant alpha frequency is usually observed, we wondered whether a spectral change

towards alpha would impact the model performance. In this section, we manipulated the

oscillatory frequency of the thalamus making it surpass bifurcation and self-oscillate in

alpha by varying its average input, pth. These simulations were performed with pTh struc-

ture and ηth = 0.022.

Simulations rising pth in prebifurcation (g<7), resulted in a transition of thalamic nodes

from the noisy 1/f pink noise spectra to an alpha oscillation (see Fig 5, FFT peak), passing

first through the slow and high amplitude limit cycle of the JR model [63, 64] at pth = [0.11—

0.13] (see the dark orange spot in Fig 5 SNR). In this transition along the bifurcation, rPLV(α)

lowered down right after the high power and slow limit cycle (pth > 0.13). This could be due

to a high SNR� 6 producing hypersynchronization (mean PLV�0.7; see Fig 5 mean PLV).

However, we did not find this phenomenon with the slow limit cycle (PLV(α)mean �0.5)

even though it showed a higher SNR. This might be explained by the alpha band filtering

that leaves out of the analysis the potentially hypersynchronizing oscillations of the slow

limit cycle.

Interestingly, the changes in thalamic activity indirectly increased the inter-regional inputs

to cortical nodes, making some of them pass bifurcation at g�3 and g�6 (see the horizontal

blue lines in Fig 5, FFT peak). These nodes produced a further rise in rPLV(α) (see the horizontal

red line in Fig 5, rPLV(α)) suggesting two important things for prebifurcation simulations: 1)

that every node is a potential contributor of a general driving mechanism that we have located

in the thalamus (through a high noise), and 2) that the number of drivers participating in that

mechanism matters.

Fig 3. Cortico-cerebellar control experiment. Comparing the simulations implementing high noise in thalamus and

in cerebellum with three versions of their structure. Left, boxplot showing maximum rPLV(α) values per subject in the

prebifurcation space for both experiments. Right, lineplots conveying averaged values of rPLV(α) per value of coupling

factor, and SC version. Shadowed areas covering the prebifurcation range.

https://doi.org/10.1371/journal.pcbi.1011007.g003
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In the range of pth = [0.13–0.3], where we observed alpha oscillations, rPLV(α) decreased. We

wondered whether this effect could be related to the rise in SNR after setting the thalamus to

oscillate in the alpha band. Therefore, we fixed pth = 0.15, and we varied the noisy input to the

thalamus (ηth) to explore its impact on model performance. We found an optimal balance for

SNR at ηth = [0.05–0.15] in which the noisy inputs to the thalamus were enough to avoid

hypersynchronization (see Fig 6 mean PLV) and low enough to maintain the intrinsic dynam-

ics produced by the thalamus (i.e., alpha oscillations, see Fig 6 FFT peak). Further increases in

noise would replace progressively the alpha oscillatory behavior by a 1/f spectra without reduc-

ing rPLV(α).

From these observations, it could be thought that a general rise of noise in the model (i.e.,

to all nodes) would lead to better performance, however, in our modeling framework this is

only true when the noise is implemented into a limited number of nodes. Independent noise

into all cortical nodes is not linked to an enhancement of rPLV(α) (see S3 Fig).

From these parameter explorations, we extracted four additional models of interest to

explore their underlying dynamics (see Fig 7). Two of them related to the exploration of pth:

Fig 4. Simulation samples for one subject with parceled thalamus. In columns, simulation samples combining low/high thalamic noise

with coupling values from pre/post- bifurcation. We selected g = 4 to simulate prebifurcation and g = 36 to simulate postbifurcation. First

two rows show samples from the simulated signals (A), and their corresponding spectra (B). Last two rows showing PLV(α) (C, D) and dFC

(α) (E, F). C and E showing empirical references for PLV(α) and dFC(α), respectively.

https://doi.org/10.1371/journal.pcbi.1011007.g004
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one for the hypersynchrony situation (pth = 0.15, ηth = 0.022), another for the slow JR limit

cycle (pth = 0.12, ηth = 0.022); and another two regarding the exploration of SNR: one for the

optimal SNR (pth = 0.15, ηth = 0.09), and another for a higher noise than the optimal range (pth

= 0.15, ηth = 0.5). Fig 7 shows the underlying dynamics for each of the additional model sce-

narios simulated with g = 2.

Discussion

Understanding thalamocortical networks is crucial for unraveling the complex dynamics of

the human brain. These networks are essential for transmitting sensory information from the

periphery to the cortex and regulating cortical arousal, which are fundamental processes for

perception, attention, and cognition. In this study, we aimed to gain a deeper understanding

of the role of the thalamus in rsFC by utilizing computational brain models. Our experiments

focused on testing two key features of thalamocortical networks: the presence of thalamic affer-

ences related to the RAS and first-order sensory relays, and the structure of the thalamus.

Interestingly, we found that only when we raised thalamic noisy inputs to represent the RAS

and peripheral afferences activating a damped cortex, its presence affected the simulated

dynamics. To validate our findings, we performed a control experiment using the cerebro-cer-

ebellar network and showed that implementing high noise into the cerebellum could replicate

the results observed in the thalamocortical network. Finally, we explored how the oscillatory

Fig 5. Parameter space explorations for pth with high thalamic noise. Sets of three simulations averaged for subject

one and parceled thalamus. Heatmaps showing different metrics from the same each simulation: the empirical-

simulated correlation of PLV in alpha band (rPLV(α)), the simulated mean and std of the PLV(α) values, the frequency

peak of the nodes’ averaged spectra (FFT peak), the signal to noise ratio in thalamic nodes computed as the amplitude

of simulated signals divided by the standard deviation of the Gaussian noise used for the thalamus (SNR(th)), and the

bifurcation of cortical signals using the averaged maximum-minimum signals’ voltage.

https://doi.org/10.1371/journal.pcbi.1011007.g005
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behavior of thalamic nodes, specifically their frequency and SNR, could shape the emergent

rsFC. Our study provides novel insights into the role of thalamocortical networks in shaping

brain dynamics and highlights the relevance of balanced SNR activity for the propagation of

alpha rhythms from the thalamus.

We expected that introducing the thalamus in our simulations would have generated a dif-

ference in model performance in postbifurcation, where the best correlations are usually

found. However, this was not the case, as implementing the thalamus in our model only

affected results in prebifurcation and when introducing a high thalamic noise to represent

afferences from RAS system and peripheral sensory relays. In prebifurcation, nodes are operat-

ing as damped oscillators tending to relaxation at a fixed point. When we introduced high

noise in the thalamus, its afferences to cortex rose cortical activation levels allowing for func-

tional interactions. In this situation, the thalamus is driving cortical activation. Additionally,

the best model performance was observed within this parametrization and including the thala-

mus with its dorsal nuclei divisions (pTh). More importantly, the postbifurcation range has

been often associated with a state of generalized epileptic seizure [71, 72] due to its highly syn-

chronized intra-node oscillatory activity (see the spectra at postbifurcation in Fig 4B) that is

Fig 6. Parameter space explorations over ηth to balance SNR in the thalamus. Sets of three simulations averaged for

subject one and parceled thalamus. Heatmaps showing different metrics from the same each simulation: the empirical-

simulated correlation of PLV in alpha band (rPLV(α)), the simulated mean and std of the PLV(α) values, the frequency

peak of the nodes’ averaged spectra (FFT peak), the signal to noise ratio in thalamic nodes computed as the amplitude

of simulated signals divided by the standard deviation of the Gaussian noise used for the thalamus (SNR(th)), and the

bifurcation of cortical signals using the averaged maximum-minimum signals’ voltage. Vertical dashed lines define the

optimal SNR range.

https://doi.org/10.1371/journal.pcbi.1011007.g006
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not the empirical target of this study (i.e., MEG resting state). Taken together, these ideas led

us to focus on the prebifurcation range.

A further control experiment demonstrated that this mechanism was not directly related to

thalamic SC. This was ascertained by embedding the driver mechanism into another hub-like

region (i.e., cerebellum) and obtaining equivalent results for the match to empirical rsFC. This

would mean that in our model, where all neural masses are functionally equal, any node could

theoretically play the role of the thalamus. In this line, during parameter explorations, some

isolated cortical nodes passing bifurcation would contribute to enhance performance by being

part of that driving mechanism. This would add up to the observation that parceled structures

(i.e., thalamus and cerebellum) performed better than their single node versions, indicating

that the number of driver nodes matters. In further research, it should be explored whether

there is a computational optimum number of drivers to reproduce rsFC that could be subject

or session-specific, and whether these differences may be linked to differences in brain and

cognitive functioning.

Fig 7. Complementary simulation samples. Simulation samples derived from the parameter explorations with parceled thalamus and

cortical nodes in prebifurcation (g = 2). In columns, simulation samples in which the thalamus drives cortical activity with different levels of

noise (ηth = [0.022, 0.09, 0.5]) and at two different points of the thalamic bifurcation determined by pth = [0.12, 0.15], the former corresponds

to the slow limit cycle of JR. First two rows show samples from the simulated signals (A), and their corresponding spectra (B). Last two rows

showing PLV(α) (C, D) and dFC(α) (E, F). C and E showing empirical references for PLV(α) and dFC(α), respectively.

https://doi.org/10.1371/journal.pcbi.1011007.g007
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Taken together, our main conclusion is that a limited set of driving nodes is likely to underlie
the dynamics of rsFC. We believe that those drivers might be linked both to the regions partici-

pating in the RAS system (Intralaminar Thalamus, Raphe Nuclei, and Locus Coeruleus) [4, 16]

and to the dorsal nuclei of the thalamus that are implicated in the relay of sensory information

and have also been tightly linked to the generation of oscillatory behavior in the cortex in slow

waves [73–76]. This would support the view of the thalamus as a driver and controller of corti-

cal dynamics [6, 26, 77–79].

Further explorations on the spectral characteristics of the drivers showed that the thalamus

could propagate its own intrinsic alpha dynamics when a balanced SNR was achieved. This

feature represents the interaction between thalamocortical pacemaker neurons [14] and

peripheral sensory inputs reaching the system and provoking event-related desynchroniza-

tion [80, 81]. The model showed a good performance for reproducing empirical rsFC in that

optimal range and with additional noise, generating a 1/f spectra. However, lower levels of

noise with an alpha-oscillating thalamus reduced performance and led to a hypersynchroni-

zation situation transmitted from the thalamus to the cortex, generating an epileptic-like

dynamic [82, 83]. In line with these results, the thalamus has been proposed to be involved in

the onset of temporal lobe epileptic seizures, transmitting more regular patterns of activity to

the hippocampus [84, 85].

From the computational perspective, previous work has shown that BNMs may repro-

duce better empirical rsFC when the models operate at the edge of bifurcation [67], the criti-

cal point. At this point, noisy excursions or the effect of nodes’ interaction can lead the

masses to behave in any of the two regimes separated by the critical point. This phenome-

non, referred to as criticality [66], has been proposed to enhance the capacity of brain sys-

tems to convey information [86]. However, in our study, we showed an equivalent

performance both at the edge of bifurcation and over the whole prebifurcation range. This

contrast might be explained by the different cortical and thalamic parametrization imple-

mented in our nodes. Our thalamic driving nodes feed the cortex, leading the dynamics. In

the cited study [67], the nodes that randomly switch between states would represent the

same driving mechanism as in our model. Interestingly though, our approach would suggest

that criticality is not a necessary feature in the dynamics of a resting brain at the mesoscale

level.

Many studies in the field have explicitly [87–89] or implicitly [66, 90–92] excluded sub-

cortical regions from their BNMs. This could be due to the technical limitations of record-

ing deep brain signals and/or to the complexity of reconstructing SC schemes for small,

deep crossing-fibers regions. But, more importantly, it could be due to the unknown role

that these regions may play in shaping simulated whole brain dynamics. Some studies have

attempted to unravel these mechanisms, showing the importance of the cerebellum for

brain dynamics [68], the relevance of cortico-subcortical interaction for shaping dynam-

ical functional connectivity [93] and the relevance of neurotransmission [65, 94]. Addi-

tionally, other studies are paving the way towards multiscale computational models in

which subcortical areas are implemented with a further spatiotemporal level of detail [95–

98]. These approaches could be an interesting path to extend our knowledge regarding the

potential role of the thalamus (and other activating brain regions) in whole brain

simulations.

In conclusion, our study provides novel insights into the role of thalamocortical networks

in shaping brain dynamics. We demonstrate that a limited set of driving nodes leading cortical

activation may better describe resting-state activity. The thalamus would be a relevant part in

this mechanism due to its participation in the RAS system and through its peripheral sensory

relays being delivered from its multiple dorsal nuclei. In this type of architecture, driving
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nodes might show a balanced SNR to avoid hypersynchronization in the network. Although it

is still debated whether the thalamus has an active role in cognition [6, 25, 99], our study

strongly suggests its active participation in driving cortical dynamics and shaping FC in rest-

ing-state. These findings may contribute to a better understanding of brain function and dys-

function, fostering the development of new therapeutic approaches targeting thalamocortical

circuits.

Materials and methods

Empirical dataset

MRI (T1 and DWI) scans and MEG recordings were acquired from 10 healthy participants in

resting-state, with ages between 62 and 77 years old (mean 69, sd 4.17, 3 males, 7 females)

from a dataset owned by the Centre of Cognitive and Computational Neuroscience, UCM,

Madrid.

MRI-T1 scans were recorded in a General Electric 1.5 Tesla magnetic resonance scanner,

using a high-resolution antenna and a homogenization PURE filter (fast spoiled gradient echo

sequence, with parameters: repetition time/echo time/inversion time = 11.2/4.2/450 ms; flip

angle = 12˚; slice thickness = 1 mm, 256×256 matrix, and field of view = 256 mm).

Diffusion-weighted images (dw-MRI) were acquired with a single-shot echo-planar imag-

ing sequence with the parameters: echo time/repetition time = 96.1/12,000 ms; NEX 3 for

increasing the SNR; slice thickness = 2.4 mm, 128×128 matrix, and field of view = 30.7 cm

yielding an isotropic voxel of 2.4 mm; 1 image with no diffusion sensitization (i.e.,

T2-weighted b0 images) and 25 dw-MRI (b = 900 s/mm2).

MEG recordings were acquired with an Elekta-Neuromag MEG system with 306 channels

at 1000Hz sampling frequency and an online band-pass filtered between 0.1 and 330Hz. MEG

protocol consisted of 5 min resting-state eyes closed.

All participants provided informed consent.

Functional connectivity

MEG recordings were preprocessed offline using the spatiotemporal signal space separation

(tSSS) filtering algorithm [100], embedded in the Maxfilter Software v2.2 (correlation limit of

0.9 and correlation window of 10 seconds), to eliminate magnetic noise and compensate for

head movements during the recording. Continuous MEG data were preprocessed using the

Fieldtrip Toolbox [101], where an independent component-based algorithm was applied to

remove the effects of ocular and cardiac signals from the data, together with external noise.

Source reconstruction was performed using the software Brainstorm [102], anatomically

informed by the MRI scans of each subject. We employed the minimum norm estimates

method [103], with the constrained dipoles variant, by which the current dipoles are oriented

normally to the cortical surface, to model the orientation of the macrocolumns of pyramidal

neurons, perpendicular to the cortex [104]

Source-space signals were then filtered in the alpha band (8–12 Hz) to calculate FC between

the time series using the Phase Locking Value (PLV(α), [105]), and the resulting matrices were

averaged into the AAL2 parcellation scheme [106]. We restricted the analysis to 1) cortical

regions, to avoid the limitations of MEG recordings regarding deep brain signals [107]; and 2)

the alpha band, for computational simplicity and being aware that it dominates MEG resting-

state recordings. In addition, we computed dynamical functional connectivity matrices by

extracting PLV(α) on consecutive intervals of 4 seconds of length with the sliding window

approach and 50% of overlapping [108], and evaluating the correlation between these PLV(α)

matrices.
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Structural connectivity

Diffusion-weighted images were processed using DSI Studio (http://dsi-studio.labsolver.org).

The quality of the images was checked before fiber tracking and corrected for motion artifacts,

eddy currents, and phase distortions. Then, tensor metrics were calculated. To improve repro-

ducibility, we used a deterministic fiber tracking algorithm with augmented tracking strategies

[109–111]. The whole brain volume was used as seeding region. Both the anisotropy and angu-

lar thresholds were randomly selected (the latter, from 15 degrees to 90 degrees). The step size

was randomly selected from 0.5 voxels to 1.5 voxels. A total of 5 million seeds were placed and

tracks with lengths shorter than 15 or longer than 180 mm were discarded.

To explore the impact of including/excluding the thalamus in simulations, we performed a

first experiment comparing three different structural connectivity (SC) versions of each subject

brains’: woTh, Th, and pTh. pTh consists of a brain network with 148 regions extracted from

AAL3 atlas from which we kept the thalamic parcellation and, removed and merged the other

areas to make it comparable to AAL2 scheme; Th consists of the 120 regions from AAL2; same

for woTh in which we removed thalamic nuclei (118 regions). These three versions of the

structural connectomes are represented in Fig 8 and included the cerebellum parceled into its

nuclei. A list with all ROIs included can be found in S1 Table. Two connectivity matrices were

calculated per SC version: counting the number of tracts connecting (i.e., passing through)

each pair of brain regions, and the average length of those tracts.

As a control experiment, we applied the same process to the cerebellum as it is a brain

region with similar network characteristics (see Table 1 and S1 Table), and it can also be mod-

eled as a parceled structure and a single node. We extracted three SC versions per brain using

AAL3 atlas: parceled cerebellum (pCer), cerebellum as a single node (Cer), and without cere-

bellum (woCer). The thalamus was modeled as parceled through all these versions, and there-

fore the resulting SCs were composed of 148, 122 and 120 regions, respectively.

Fig 8. SC versions. First line shows the SC versions for the thalamocortical experiment: woTh, Th, pTh. The second

line shows the SC versions for the cortico-cerebellar control experiment. Dashed lines representing driver connections.

https://doi.org/10.1371/journal.pcbi.1011007.g008
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Brain network model

SC matrices served as the skeleton for the BNMs implemented in TVB [112] where regional

signals were simulated using JR NMMs [62]. This is a biologically inspired model of a cortical

column capable of reproducing alpha oscillations through a system of second-order coupled

differential equations:

_y0i
ðtÞ ¼ y3i

ðtÞ ð1Þ

_y1i
ðtÞ ¼ y4i

ðtÞ ð2Þ

_y2i
ðtÞ ¼ y5i

ðtÞ ð3Þ

_y3i
ðtÞ ¼ AaS½y1i

ðtÞ � y2i
ðtÞ� � 2ay3i

ðtÞ � a2y0i
ðtÞ ð4Þ

_y4i
ðtÞ ¼ AaðinputðtÞ þ C2S½C1y0i

ðtÞ�Þ � 2ay4i
ðtÞ � a2y1i

ðtÞ ð5Þ

_y5i
ðtÞ ¼ BbðC4S½C3y0i

ðtÞ�Þ � 2by5i
ðtÞ � b2y2i

ðtÞ ð6Þ

Where:

S v½ � ¼
ð2 � vmaxÞ

1 þ exprðv0 � vÞ
ð7Þ

The inter-regional communication introduces heterogeneity in terms of connection

strength wji, and conduction delays dji (i.e., tract length / conduction speed) between nodes i

and j, where:

inputðtÞ ¼ pi þ ZiðtÞ þ g
Xn

j¼1

wji � S½y1j
ðt � djiÞ � y2j

ðt � djiÞ� ð8Þ

It represents the electrophysiological activity (in voltage) from three subpopulations of neu-

rons: pyramidal neurons (y0), excitatory interneurons (y1), and inhibitory interneurons (y2).

These subpopulations are interconnected (Fig 9) and integrate external inputs from other

Fig 9. JR model of a cortical column. a) Block diagram depicting JR operators and modules where each color is associated with a different

neural population: pyramidal (cyan), excitatory interneurons (green) and inhibitory interneuron (red). b) Histological contextualization of the

cortical layers. Modified from [62, 90].

https://doi.org/10.1371/journal.pcbi.1011007.g009
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cortical columns. The communication is implemented in terms of firing rate (Eqs 1 to 6) and a

sigmoidal function (Eq 7) stands for the conversion from voltage to firing rate.

The input represents two main drivers of activity in the NMMs: inter-regional communica-

tion and intrinsic input. The former consists of the signal transmission between nodes through

the SC of the brain in which weights are linearly scaled by a global coupling factor g, and tract

lengths are divided by conduction speed to define dji. Conduction speed was set to 15 m/s

given the low impact shown in previous parameter space explorations done in this project (see

S5 Fig). The latter is defined by a Gaussian noise with p mean and η std. Parameter values are

described in Table 2.

The JR model shows two supercritical hopf bifurcations for the parameter p [64]. When JR

NMMs are implemented in a connected network, the parameter g scales the inter-regional

input to nodes, becoming a bifurcation parameter. We used the first bifurcation to separate

two NMM’s behaviors (Fig 10): damped oscillator in the prebifurcation range where nodes

Table 2. JR parameters used in simulations.

Parameter Value Unit Description

A 3.25 mV Average excitatory synaptic gain

B 22 mV Average inhibitory synaptic gain

a 0.1 ms-1 Time Constant of excitatory PSP

b 0.05 ms-1 Time Constant of inhibitory PSP

C1 135 Average synaptic contacts: pyramidals to excitatory interneurons

C2 108 Average synaptic contacts: excitatory interneurons to pyramidals

C3 33.75 Average synaptic contacts: pyramidals to inhibitory interneurons

C4 33.75 Average synaptic contacts: inhibitory interneurons to pyramidals

vmax 0.0025 ms-1 Half the maximum firing rate

r 0.56 mV-1 Slope of the presynaptic function at v0

v0 6 mV Potential when half the maximum firing rate is achieved

p variable ms-1 Mean of random Gaussian intrinsic input

η variable ms-1 Standard deviation of random Gaussian intrinsic input (noise)

g variable Coupling factor for inter-regional communication - multiplier of weights -

s 15 mm/ms Conduction speed for inter-regional communication

Unless otherwise stated, we used default values for parameters p = 0.09 and η = 2.2x10-8. Note that along the study,

we introduce bimodalities in those parameters pth and ηth)

https://doi.org/10.1371/journal.pcbi.1011007.t002

Fig 10. The bifurcation separates two states. In the center, a bifurcation diagram shows the minimum and maximum

voltage for each value of the bifurcation parameter. At the critical point (dashed line), the bifurcation occurs and

separates two states of the system: a) damped oscillator, whose activity tends to decay to a fixed point; and b) limit cycle

oscillator, whose activity is a self-sustained oscillation.

https://doi.org/10.1371/journal.pcbi.1011007.g010
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tend to a fixed point in voltage, and limit cycle in the postbifurcation range where nodes self-

oscillate in the alpha frequency.

Simulations

In the first experiment, simulations were performed varying two parameters: the standard

deviation of the input to the thalamus (i.e., noise, ηth = [0.022, 2.2x10-8]) representing the pres-

ence/absence of subcortical and peripheral inputs; and the thalamic structure (woTh, Th,

pTh). The higher noise level was determined following previous research [12], while the lower

was chosen to avoid flat signals in the fixed state of the JR model. Additionally, we explored

the parameter space for coupling factor (g=[0–60]). These models were simulated with the

parameter p set to 0.09. We performed three simulations of 60 seconds (removing the initial 4

seconds to avoid transients) per model and computed two metrics: the Pearson’s correlation

coefficient between the vectorized upper triangular matrices of the simulated and empirical

FC (i.e., rPLV(α)); and the KSD(α) between the distributions of correlations in the dFC matrices

(empirical and simulated). The same configuration was used in the control experiment with

the cerebellum.

For further explorations, we simulated for 10 seconds (omitting the initial 2 seconds to

avoid transients) different ranges of the mean intrinsic input to the thalamus pth) and its stan-

dard deviation (ηth). Besides the rPLV(α) and KSD(α) metrics, we show 1) bifurcation diagrams
capturing the averaged maximum and minimum signal’s voltage per simulated ROI at each

point in the parameter space. In the case of exploring 2 parameters at the same time (e.g., g
and pth), bifurcations are presented in heatmaps conveying information about the difference

between the maximum and minimum signal voltage; 2) signal-to-noise ratio (SNR) in the thal-

amus that is computed by dividing the amplitude of simulated signals by the standard devia-

tion of the Gaussian noise used for the thalamus; 3) relative power between cortex and

thalamus calculated by dividing the averaged area of cortical spectra by the averaged area of

thalamic spectra.

Statistics

We averaged the results of the 3 sets of simulations (i.e., repetitions) and performed statistical

analysis for the group of 10 subjects. For the first experiment, we considered the maximum

rPLV(α) and minimum KSD(α) per subject, thalamic SC version and scenario. The effects of

thalamic SC version and noise levels were evaluated using four two-way repeated measures

ANOVA: two comparing maximum rPLV(α) in prebifurcation and postbifurcation; and another

two comparing minimum KSD; after checking for the statistical assumptions of normality

(Shapiro’s test) and sphericity (Mauchly’s test). Pairwise comparisons for thalamic structure

and thalamic noise were evaluated using Wilcoxon test, correcting for multiple comparisons

using FDR Benjamini-Hochberg method. The same procedure was applied in the control

experiment with the cerebro-cerebellar network to maximum rPLV(α) comparisons.

Supporting information

S1 Fig. Lineplots showing rPLV(α), KSD(α) and bifurcations per subject and SC version.

The global behavior in rPLV(first column) was similar for every subject. Note slight differences

for subject 2 and subject 8 in which the bifurcation does not match the highest rPLV value.

(EPS)

S2 Fig. Empirical and simulated distributions of Pearson’s correlation values in dFC

matrices. Simulations were performed for subject 1 with high thalamic noise (ηth = 0.022) and
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in both prebifurcation (g = [3, 7]) and postbifurcation 2 (g = [9, 40]). The three thalamocortical

SC (i.e., woTh, Th, pTh) versions were simulated.

(EPS)

S3 Fig. Rising cortical noise hampers rPLV(α). First row, showing simulations where all nodes

have the same parametrization (p = 0.09; η = variable). Second row, showing simulations with

the thalamus in limit cycle condition pth = 0.15, ηth = 0.09) and a variable noisy input to corti-

cal nodes (pcx = 0.09, ηcx = variable).

(EPS)

S4 Fig. Parameter space explorations for conduction speed and coupling factor in the

BNM with initial parameters. The model was parameterized as in the first in-silico experi-

ment shown in Fig 2F (i.e., the thalamocortical experiment with high thalamic noise

pth = 0.09, ηth = 0.022, pcx = 0.09, ηcx = 2.2e-8). Each column shows a set of simulations with

a different SC version: woTh, Th, and pTh. The three heatmaps shown per column represent

different measures of the same simulation including rPLV(α), IAF as the frequency peak of the

averaged spectrum from all nodes, and the power at the frequency peak of the averaged spec-

trum.

(EPS)

S5 Fig. Parameter space explorations for conduction speed and coupling factor in the

BNM with final parameters. The model was parameterized following the last in-silico experi-

ments to obtain alpha in prebifurcation as shown in Fig 7 second last column (i.e., pth = 0.15,

ηth = 0.09, pcx = 0.09, ηcx = 2.2e-8). Each column shows a set of simulations with a different

SC version: woTh, Th, and pTh. The three heatmaps shown per column represent different

measures of the same simulation including rPLV(α), IAF as the frequency peak of the averaged

spectrum from all nodes, and the power at the frequency peak of the averaged spectrum.

(EPS)

S1 Table. Network analysis of the regions included in the BNMs. Degree, the number of

neighbors of a region, and node strength, the average number of streamlines connecting a

region to others were normalized over their respective maxima. Betweenness captures the

number of shortest paths in a network that passes through a node. Path length stands for the

average of the shortest paths for a node. Metrics were calculated with Networkx package in

Python 3.9. The thalamus and the cerebellum are considered here in the parceled version.

Note that Cingulate_Ant in AAL3 is divided in 3 parts and it was merged to match AAL2

scheme.

(XLSX)
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