100 research outputs found

    The progression of disorder-specific brain pattern expression in schizophrenia over 9 years.

    Get PDF
    Age plays a crucial role in the performance of schizophrenia vs. controls (SZ-HC) neuroimaging-based machine learning (ML) models as the accuracy of identifying first-episode psychosis from controls is poor compared to chronic patients. Resolving whether this finding reflects longitudinal progression in a disorder-specific brain pattern or a systematic but non-disorder-specific deviation from a normal brain aging (BA) trajectory in schizophrenia would help the clinical translation of diagnostic ML models. We trained two ML models on structural MRI data: an SZ-HC model based on 70 schizophrenia patients and 74 controls and a BA model (based on 561 healthy individuals, age range = 66 years). We then investigated the two models' predictions in the naturalistic longitudinal Northern Finland Birth Cohort 1966 (NFBC1966) following 29 schizophrenia and 61 controls for nine years. The SZ-HC model's schizophrenia-specificity was further assessed by utilizing independent validation (62 schizophrenia, 95 controls) and depression samples (203 depression, 203 controls). We found better performance at the NFBC1966 follow-up (sensitivity = 75.9%, specificity = 83.6%) compared to the baseline (sensitivity = 58.6%, specificity = 86.9%). This finding resulted from progression in disorder-specific pattern expression in schizophrenia and was not explained by concomitant acceleration of brain aging. The disorder-specific pattern's progression reflected longitudinal changes in cognition, outcomes, and local brain changes, while BA captured treatment-related and global brain alterations. The SZ-HC model was also generalizable to independent schizophrenia validation samples but classified depression as control subjects. Our research underlines the importance of taking account of longitudinal progression in a disorder-specific pattern in schizophrenia when developing ML classifiers for different age groups

    Neural processing of emotional facial stimuli in specific phobia: An fMRI study

    Get PDF
    Background Patients with specific phobia (SP) show altered brain activation when confronted with phobia-specific stimuli. It is unclear whether this pathogenic activation pattern generalizes to other emotional stimuli. This study addresses this question by employing a well-powered sample while implementing an established paradigm using nonspecific aversive facial stimuli. Methods N = 111 patients with SP, spider subtype, and N = 111 healthy controls (HCs) performed a supraliminal emotional face-matching paradigm contrasting aversive faces versus shapes in a 3-T magnetic resonance imaging scanner. We performed region of interest (ROI) analyses for the amygdala, the insula, and the anterior cingulate cortex using univariate as well as machine-learning-based multivariate statistics based on this data. Additionally, we investigated functional connectivity by means of psychophysiological interaction (PPI). Results Although the presentation of emotional faces showed significant activation in all three ROIs across both groups, no group differences emerged in all ROIs. Across both groups and in the HC > SP contrast, PPI analyses showed significant task-related connectivity of brain areas typically linked to higher-order emotion processing with the amygdala. The machine learning approach based on whole-brain activity patterns could significantly differentiate the groups with 73% balanced accuracy. Conclusions Patients suffering from SP are characterized by differences in the connectivity of the amygdala and areas typically linked to emotional processing in response to aversive facial stimuli (inferior parietal cortex, fusiform gyrus, middle cingulate, postcentral cortex, and insula). This might implicate a subtle difference in the processing of nonspecific emotional stimuli and warrants more research furthering our understanding of neurofunctional alteration in patients with SP.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe

    Early Detection of SARS-CoV-2 Omicron BA.4 and BA.5 in German Wastewater

    Get PDF
    Wastewater-based SARS-CoV-2 epidemiology (WBE) has been established as an important tool to support individual testing strategies. The Omicron sub-variants BA.4/BA.5 have spread globally, displacing the preceding variants. Due to the severe transmissibility and immune escape potential of BA.4/BA.5, early monitoring was required to assess and implement countermeasures in time. In this study, we monitored the prevalence of SARS-CoV-2 BA.4/BA.5 at six municipal wastewater treatment plants (WWTPs) in the Federal State of North Rhine-Westphalia (NRW, Germany) in May and June 2022. Initially, L452R-specific primers/probes originally designed for SARS-CoV-2 Delta detection were validated using inactivated authentic viruses and evaluated for their suitability for detecting BA.4/BA.5. Subsequently, the assay was used for RT-qPCR analysis of RNA purified from wastewater obtained twice a week at six WWTPs. The occurrence of L452R carrying RNA was detected in early May 2022, and the presence of BA.4/BA.5 was confirmed by variant-specific single nucleotide polymorphism PCR (SNP-PCR) targeting E484A/F486V and NGS sequencing. Finally, the mutant fractions were quantitatively monitored by digital PCR, confirming BA.4/BA.5 as the majority variant by 5 June 2022. In conclusion, the successive workflow using RT-qPCR, variant-specific SNP-PCR, and RT-dPCR demonstrates the strength of WBE as a versatile tool to rapidly monitor variants spreading independently of individual test capacities

    The neural signature of psychomotor disturbance in depression.

    Get PDF
    Up to 70% of patients with major depressive disorder present with psychomotor disturbance (PmD), but at the present time understanding of its pathophysiology is limited. In this study, we capitalized on a large sample of patients to examine the neural correlates of PmD in depression. This study included 820 healthy participants and 699 patients with remitted (n = 402) or current (n = 297) depression. Patients were further categorized as having psychomotor retardation, agitation, or no PmD. We compared resting-state functional connectivity (ROI-to-ROI) between nodes of the cerebral motor network between the groups, including primary motor cortex, supplementary motor area, sensory cortex, superior parietal lobe, caudate, putamen, pallidum, thalamus, and cerebellum. Additionally, we examined network topology of the motor network using graph theory. Among the currently depressed 55% had PmD (15% agitation, 29% retardation, and 11% concurrent agitation and retardation), while 16% of the remitted patients had PmD (8% retardation and 8% agitation). When compared with controls, currently depressed patients with PmD showed higher thalamo-cortical and pallido-cortical connectivity, but no network topology alterations. Currently depressed patients with retardation only had higher thalamo-cortical connectivity, while those with agitation had predominant higher pallido-cortical connectivity. Currently depressed patients without PmD showed higher thalamo-cortical, pallido-cortical, and cortico-cortical connectivity, as well as altered network topology compared to healthy controls. Remitted patients with PmD showed no differences in single connections but altered network topology, while remitted patients without PmD did not differ from healthy controls in any measure. We found evidence for compensatory increased cortico-cortical resting-state functional connectivity that may prevent psychomotor disturbance in current depression, but may perturb network topology. Agitation and retardation show specific connectivity signatures. Motor network topology is slightly altered in remitted patients arguing for persistent changes in depression. These alterations in functional connectivity may be addressed with non-invasive brain stimulation

    Severity of current depression and remission status are associated with structural connectome alterations in major depressive disorder

    Get PDF
    Major depressive disorder (MDD) is associated to affected brain wiring. Little is known whether these changes are stable over time and hence might represent a biological predisposition, or whether these are state markers of current disease severity and recovery after a depressive episode. Human white matter network ("connectome") analysis via network science is a suitable tool to investigate the association between affected brain connectivity and MDD. This study examines structural connectome topology in 464 MDD patients (mean age: 36.6 years) and 432 healthy controls (35.6 years). MDD patients were stratified categorially by current disease status (acute vs. partial remission vs. full remission) based on DSM-IV criteria. Current symptom severity was assessed continuously via the Hamilton Depression Rating Scale (HAMD). Connectome matrices were created via a combination of T1-weighted magnetic resonance imaging (MRI) and tractography methods based on diffusion-weighted imaging. Global tract-based metrics were not found to show significant differences between disease status groups, suggesting conserved global brain connectivity in MDD. In contrast, reduced global fractional anisotropy (FA) was observed specifically in acute depressed patients compared to fully remitted patients and healthy controls. Within the MDD patients, FA in a subnetwork including frontal, temporal, insular, and parietal nodes was negatively associated with HAMD, an effect remaining when correcting for lifetime disease severity. Therefore, our findings provide new evidence of MDD to be associated with structural, yet dynamic, state-dependent connectome alterations, which covary with current disease severity and remission status after a depressive episode

    Characterisation of age and polarity at onset in bipolar disorder

    Get PDF
    Background Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools. Aims To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics. Method Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts. Results Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO. Conclusions AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.publishedVersio

    A genome-wide association study of the longitudinal course of executive functions

    Get PDF
    Executive functions are metacognitive capabilities that control and coordinate mental processes. In the transdiagnostic PsyCourse Study, comprising patients of the affective-to-psychotic spectrum and controls, we investigated the genetic basis of the time course of two core executive subfunctions: set-shifting (Trail Making Test, part B (TMT-B)) and updating (Verbal Digit Span backwards) in 1338 genotyped individuals. Time course was assessed with four measurement points, each 6 months apart. Compared to the initial assessment, executive performance improved across diagnostic groups. We performed a genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with performance change over time by testing for SNP-by-time interactions using linear mixed models. We identified nine genome-wide significant SNPs for TMT-B in strong linkage disequilibrium with each other on chromosome 5. These were associated with decreased performance on the continuous TMT-B score across time. Variant rs150547358 had the lowest P value = 7.2 × 10(−10) with effect estimate beta = 1.16 (95% c.i.: 1.11, 1.22). Implementing data of the FOR2107 consortium (1795 individuals), we replicated these findings for the SNP rs150547358 (P value = 0.015), analyzing the difference of the two available measurement points two years apart. In the replication study, rs150547358 exhibited a similar effect estimate beta = 0.85 (95% c.i.: 0.74, 0.97). Our study demonstrates that longitudinally measured phenotypes have the potential to unmask novel associations, adding time as a dimension to the effects of genomics

    Diagnosis of bipolar disorders and body mass index predict clustering based on similarities in cortical thickness-ENIGMA study in 2436 individuals

    Get PDF
    AIMS: Rates of obesity have reached epidemic proportions, especially among people with psychiatric disorders. While the effects of obesity on the brain are of major interest in medicine, they remain markedly under-researched in psychiatry. METHODS: We obtained body mass index (BMI) and magnetic resonance imaging-derived regional cortical thickness, surface area from 836 bipolar disorders (BD) and 1600 control individuals from 14 sites within the ENIGMA-BD Working Group. We identified regionally specific profiles of cortical thickness using K-means clustering and studied clinical characteristics associated with individual cortical profiles. RESULTS: We detected two clusters based on similarities among participants in cortical thickness. The lower thickness cluster (46.8% of the sample) showed thinner cortex, especially in the frontal and temporal lobes and was associated with diagnosis of BD, higher BMI, and older age. BD individuals in the low thickness cluster were more likely to have the diagnosis of bipolar disorder I and less likely to be treated with lithium. In contrast, clustering based on similarities in the cortical surface area was unrelated to BD or BMI and only tracked age and sex. CONCLUSIONS: We provide evidence that both BD and obesity are associated with similar alterations in cortical thickness, but not surface area. The fact that obesity increased the chance of having low cortical thickness could explain differences in cortical measures among people with BD. The thinner cortex in individuals with higher BMI, which was additive and similar to the BD-associated alterations, may suggest that treating obesity could lower the extent of cortical thinning in BD

    Volume of subcortical brain regions in social anxiety disorder:mega-analytic results from 37 samples in the ENIGMA-Anxiety Working Group

    Get PDF
    There is limited convergence in neuroimaging investigations into volumes of subcortical brain regions in social anxiety disorder (SAD). The inconsistent findings may arise from variations in methodological approaches across studies, including sample selection based on age and clinical characteristics. The ENIGMA-Anxiety Working Group initiated a global mega-analysis to determine whether differences in subcortical volumes can be detected in adults and adolescents with SAD relative to healthy controls. Volumetric data from 37 international samples with 1115 SAD patients and 2775 controls were obtained from ENIGMA-standardized protocols for image segmentation and quality assurance. Linear mixed-effects analyses were adjusted for comparisons across seven subcortical regions in each hemisphere using family-wise error (FWE)-correction. Mixed-effects d effect sizes were calculated. In the full sample, SAD patients showed smaller bilateral putamen volume than controls (left: d = −0.077, pFWE = 0.037; right: d = −0.104, pFWE = 0.001), and a significant interaction between SAD and age was found for the left putamen (r = −0.034, pFWE = 0.045). Smaller bilateral putamen volumes (left: d = −0.141, pFWE &lt; 0.001; right: d = −0.158, pFWE &lt; 0.001) and larger bilateral pallidum volumes (left: d = 0.129, pFWE = 0.006; right: d = 0.099, pFWE = 0.046) were detected in adult SAD patients relative to controls, but no volumetric differences were apparent in adolescent SAD patients relative to controls. Comorbid anxiety disorders and age of SAD onset were additional determinants of SAD-related volumetric differences in subcortical regions. To conclude, subtle volumetric alterations in subcortical regions in SAD were detected. Heterogeneity in age and clinical characteristics may partly explain inconsistencies in previous findings. The association between alterations in subcortical volumes and SAD illness progression deserves further investigation, especially from adolescence into adulthood.</p
    corecore