17 research outputs found

    Is routinely searching for halophilic vibrios useful in non-coastal areas?

    Get PDF

    Multi-ancestry GWAS reveals excitotoxicity associated with outcome after ischaemic stroke

    Get PDF
    During the first hours after stroke onset, neurological deficits can be highly unstable: some patients rapidly improve, while others deteriorate. This early neurological instability has a major impact on long-term outcome. Here, we aimed to determine the genetic architecture of early neurological instability measured by the difference between the National Institutes of Health Stroke Scale (NIHSS) within 6 h of stroke onset and NIHSS at 24 h. A total of 5876 individuals from seven countries (Spain, Finland, Poland, USA, Costa Rica, Mexico and Korea) were studied using a multi-ancestry meta-analyses. We found that 8.7% of NIHSS at 24 h of variance was explained by common genetic variations, and also that early neurological instability has a different genetic architecture from that of stroke risk. Eight loci (1p21.1, 1q42.2, 2p25.1, 2q31.2, 2q33.3, 5q33.2, 7p21.2 and 13q31.1) were genome-wide significant and explained 1.8% of the variability suggesting that additional variants influence early change in neurological deficits. We used functional genomics and bioinformatic annotation to identify the genes driving the association from each locus. Expression quantitative trait loci mapping and summary data-based Mendelian randomization indicate that ADAM23 (log Bayes factor = 5.41) was driving the association for 2q33.3. Gene-based analyses suggested that GRIA1 (log Bayes factor = 5.19), which is predominantly expressed in the brain, is the gene driving the association for the 5q33.2 locus. These analyses also nominated GNPAT (log Bayes factor = 7.64) ABCB5 (log Bayes factor = 5.97) for the 1p21.1 and 7p21.1 loci. Human brain single-nuclei RNA-sequencing indicates that the gene expression of ADAM23 and GRIA1 is enriched in neurons. ADAM23, a presynaptic protein and GRIA1, a protein subunit of the AMPA receptor, are part of a synaptic protein complex that modulates neuronal excitability. These data provide the first genetic evidence in humans that excitotoxicity may contribute to early neurological instability after acute ischaemic stroke. Ibanez et al. perform a multi-ancestry meta-analysis to investigate the genetic architecture of early stroke outcomes. Two of the eight genome-wide significant loci identified-ADAM23 and GRIA1-are involved in synaptic excitability, suggesting that excitotoxicity contributes to neurological instability after ischaemic stroke.Peer reviewe

    Alzheimer's disease susceptibility genes APOE and TOMM40, and brain white matter integrity in the Lothian Birth Cohort 1936

    Get PDF
    Apolipoprotein E (APOE) ε genotype has previously been significantly associated with cognitive, brain imaging, and Alzheimer's disease-related phenotypes (e.g., age of onset). In the TOMM40 gene, the rs10524523 (“523”) variable length poly-T repeat polymorphism has more recently been associated with similar ph/enotypes, although the allelic directions of these associations have varied between initial reports. Using diffusion magnetic resonance imaging tractography, the present study aimed to investigate whether there are independent effects of apolipoprotein E (APOE) and TOMM40 genotypes on human brain white matter integrity in a community-dwelling sample of older adults, the Lothian Birth Cohort 1936 (mean age = 72.70 years, standard deviation = 0.74, N approximately = 640–650; for most analyses). Some nominally significant effects were observed (i.e., covariate-adjusted differences between genotype groups at p < 0.05). For APOE, deleterious effects of ε4 “risk” allele presence (vs. absence) were found in the right ventral cingulum and left inferior longitudinal fasciculus. To test for biologically independent effects of the TOMM40 523 repeat, participants were stratified into APOE genotype subgroups, so that any significant effects could not be attributed to APOE variation. In participants with the APOE ε3/ε4 genotype, effects of TOMM40 523 status were found in the left uncinate fasciculus, left rostral cingulum, left ventral cingulum, and a general factor of white matter integrity. In all 4 of these tractography measures, carriers of the TOMM40 523 “short” allele showed lower white matter integrity when compared with carriers of the “long” and “very-long” alleles. Most of these effects survived correction for childhood intelligence test scores and vascular disease history, though only the effect of TOMM40 523 on the left ventral cingulum integrity survived correction for false discovery rate. The effects of APOE in this older population are more specific and restricted compared with those reported in previous studies, and the effects of TOMM40 on white matter integrity appear to be novel, although replication is required in large independent samples

    Alzheimer's Disease susceptibility genes APOE and TOMM40, and hippocampal volumes in the Lothian birth cohort 1936

    Get PDF
    The APOE ε and TOMM40 rs10524523 (‘523’) variable length poly-T repeat gene loci have been significantly and independently associated with Alzheimer’s disease (AD) related phenotypes such as age of clinical onset. Hippocampal atrophy has been significantly associated with memory impairment, a characteristic of AD. The current study aimed to test for independent effects of APOE ε and TOMM40 ‘523’ genotypes on hippocampal volumes as assessed by brain structural MRI in a relatively large sample of community-dwelling older adults. As part of a longitudinal study of cognitive ageing, participants in the Lothian Birth Cohort 1936 underwent genotyping for APOE ε2/ε3/ε4 status and TOMM40 ‘523’ poly-T repeat length, and detailed structural brain MRI at a mean age of 72.7 years (standard deviation = 0.7, N range = 624 to 636). No significant effects of APOE ε or TOMM40 523 genotype were found on hippocampal volumes when analysed raw, or when adjusted for either intracranial or total brain tissue volumes. In summary, in a large community-dwelling sample of older adults, we found no effects of APOE ε or TOMM40 523 genotypes on hippocampal volumes. This is discrepant with some previous reports of significant association between APOE and left/right hippocampal volumes, and instead echoes other reports that found no association. Previous significant findings may partly reflect type 1 error. Future studies should carefully consider: 1) their specific techniques in adjusting for brain size; 2) assessing more detailed sub-divisions of the hippocampal formation; and 3) testing whether significant APOE-hippocampal associations are independent of generalised brain atrophy

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    Early neurological change after ischemic stroke is associated with 90-day outcome

    No full text
    BACKGROUND AND PURPOSE: Large-scale observational studies of acute ischemic stroke (AIS) promise to reveal mechanisms underlying cerebral ischemia. However, meaningful quantitative phenotypes attainable in large patient populations are needed. We characterize a dynamic metric of AIS instability, defined by change in National Institutes of Health Stroke Scale score (NIHSS) from baseline to 24 hours baseline to 24 hours (NIHSSbaseline - NIHSS24hours = ΔNIHSS6-24h), to examine its relevance to AIS mechanisms and long-term outcomes.METHODS: Patients with NIHSS prospectively recorded within 6 hours after onset and then 24 hours later were enrolled in the GENISIS study (Genetics of Early Neurological Instability After Ischemic Stroke). Stepwise linear regression determined variables that independently influenced ΔNIHSS6-24h. In a subcohort of tPA (alteplase)-treated patients with large vessel occlusion, the influence of early sustained recanalization and hemorrhagic transformation on ΔNIHSS6-24h was examined. Finally, the association of ΔNIHSS6-24h with 90-day favorable outcomes (modified Rankin Scale score 0-2) was assessed. Independent analysis was performed using data from the 2 NINDS-tPA stroke trials (National Institute of Neurological Disorders and Stroke rt-PA).RESULTS: For 2555 patients with AIS, median baseline NIHSS was 9 (interquartile range, 4-16), and median ΔNIHSS6-24h was 2 (interquartile range, 0-5). In a multivariable model, baseline NIHSS, tPA-treatment, age, glucose, site, and systolic blood pressure independently predicted ΔNIHSS6-24h (R2=0.15). In the large vessel occlusion subcohort, early sustained recanalization and hemorrhagic transformation increased the explained variance (R2=0.27), but much of the variance remained unexplained. ΔNIHSS6-24h had a significant and independent association with 90-day favorable outcome. For the subjects in the 2 NINDS-tPA trials, ΔNIHSS3-24h was similarly associated with 90-day outcomes.CONCLUSIONS: The dynamic phenotype, ΔNIHSS6-24h, captures both explained and unexplained mechanisms involved in AIS and is significantly and independently associated with long-term outcomes. Thus, ΔNIHSS6-24h promises to be an easily obtainable and meaningful quantitative phenotype for large-scale genomic studies of AIS.</p

    Early neurological change after ischemic stroke is associated with 90-day outcome

    No full text
    BACKGROUND AND PURPOSE: Large-scale observational studies of acute ischemic stroke (AIS) promise to reveal mechanisms underlying cerebral ischemia. However, meaningful quantitative phenotypes attainable in large patient populations are needed. We characterize a dynamic metric of AIS instability, defined by change in NIH stroke scale score (NIHSS) from baseline to 24 hours (baseline – 24h = ΔNIHSS(6–24h)), to examine its relevance to AIS mechanisms and long-term outcomes. METHODS: Patients with NIHSS prospectively recorded within 6h after onset and then 24h later were enrolled in the GENISIS (Genetics of Early Neurological InStability after Ischemic Stroke) study. Stepwise linear regression determined variables that independently influenced ΔNIHSS(6–24h). In a subcohort of tPA-treated patients with large vessel occlusion (LVO), the influence of early sustained recanalization and hemorrhagic transformation (HT) on ΔNIHSS(6–24h) was examined. Finally, the association of ΔNIHSS(6–24h) with 90-day favorable outcomes (modified Rankin scale score 0–2) was assessed. Independent analysis was performed using data from the two NINDS tPA stroke trials. RESULTS: For 2555 AIS patients, median baseline NIHSS was 9 (IQR 4–16) and median ΔNIHSS(6–24h) was 2 (IQR 0–5). In a multivariable model, baseline NIHSS, tPA treatment, age, glucose, site and systolic blood pressure independently predicted ΔNIHSS(6–24h) (R(2)=0.15). In the LVO subcohort, early sustained recanalization and HT increased the explained variance (R(2)=0.27), but much of the variance remained unexplained. ΔNIHSS(6–24h) had significant and independent association with 90-day favorable outcome. For the subjects in the two NINDS tPA trials, ΔNIHSS(3–24h) was similarly associated with 90-day outcomes. CONCLUSIONS: The dynamic phenotype, ΔNIHSS(6–24h), captures both explained and unexplained mechanisms involved in AIS, and is significantly and independently associated with long-term outcomes. Thus, ΔNIHSS(6–24h) promises to be an easily obtainable and meaningful quantitative phenotype for large-scale genomic studies of AIS
    corecore