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Abstract

The APOE ε and TOMM40 rs10524523 (‘523’) variable length poly-T repeat gene loci have been significantly and
independently associated with Alzheimer’s disease (AD) related phenotypes such as age of clinical onset.
Hippocampal atrophy has been significantly associated with memory impairment, a characteristic of AD. The current
study aimed to test for independent effects of APOE ε and TOMM40 ‘523’ genotypes on hippocampal volumes as
assessed by brain structural MRI in a relatively large sample of community-dwelling older adults. As part of a
longitudinal study of cognitive ageing, participants in the Lothian Birth Cohort 1936 underwent genotyping for APOE
ε2/ε3/ε4 status and TOMM40 ‘523’ poly-T repeat length, and detailed structural brain MRI at a mean age of 72.7
years (standard deviation = 0.7, N range = 624 to 636). No significant effects of APOE ε or TOMM40 523 genotype
were found on hippocampal volumes when analysed raw, or when adjusted for either intracranial or total brain tissue
volumes. In summary, in a large community-dwelling sample of older adults, we found no effects of APOE ε or
TOMM40 523 genotypes on hippocampal volumes. This is discrepant with some previous reports of significant
association between APOE and left/right hippocampal volumes, and instead echoes other reports that found no
association. Previous significant findings may partly reflect type 1 error. Future studies should carefully consider: 1)
their specific techniques in adjusting for brain size; 2) assessing more detailed sub-divisions of the hippocampal
formation; and 3) testing whether significant APOE-hippocampal associations are independent of generalised brain
atrophy.
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Introduction

Dementia is a growing world-wide problem, and it is
important to understand the risk factors and mechanisms

underlying the disease. The major sub-type of dementia is
Alzheimer’s disease (AD). A key brain region involved in the
illness is the hippocampus, and hippocampal volumetric
atrophy has been used as an indicator of AD risk [1,2]. Two
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genetic risk factors are in the APOE and TOMM40 genes [3].
The present study concerns the association between specific
variants in these genes and hippocampal volume in non-
demented older people, in an attempt to investigate further
possible links between these candidate genes and a prominent
brain phenotype thought to be indicative of AD risk. We first
introduce these genes and then the hippocampus and its part
in dementia, including genetic risk factors.

Apolipoprotein-e (APOE)
The APOE ε haplotype (commonly and hereinafter referred

to as ε ‘genotype’) is composed of two single nucleotide
polymorphisms (SNPs); rs429358, which causes a Cys130Arg
substitution; and rs7412, which causes an Arg176Cys
substitution [4]. Different combinations of the rs429358/rs7412
SNPs form the ε2 (Cys/Cys respectively), ε3 (Cys/Arg) and ε4
(Arg/Arg) haplotypes [5]. Of these, the ε3 allele is the most
common (frequency ~78.3%), followed by ε 4 (~14.5%) and ε2
(~6.4%) [6].

APOE plays a role in the transport and metabolism of lipid in
the brain [7][8]. The ε4 allele is the deleterious ‘risk’ variant for
cognitive ageing [9] and diagnosis of AD [10] compared with ε3
(‘neutral’), and ε2 (putatively ‘protective’).

The APOE ε4 allele may contribute to phenotypic differences
through different and/or interactive mechanisms, by: i)
moderating processes that lead to an accumulation of 42-
residue amyloid-beta (‘Aβ’) plaques in the brain [11,12]; ii)
disrupting the normal transport and catabolism of cholesterol,
required for the development and maintenance of neurons and
myelin [5,11]; and iii) via second order associations with
vascular diseases that affect the brain, such as atherosclerosis
[13,14]. Independent genetic factors may play an interactive or
moderating role in terms of the association between APOE ε
genotype and clinical AD/cognitive decline.

Translocase of Outer Mitochondrial Membrane 40
(TOMM40)

The TOMM40 gene is located adjacent to APOE [15] and
several SNPs in the two genes are in significant linkage
disequilibrium (LD); e.g. rs429358 and 36 SNPs within ±1.17
KB of the APOE region including 15 TOMM40 SNPs; average
D’ = 0.91, r2 = 0.22, n = 1262 [16].

TOMM40 encodes the channel-forming subunit of the
translocase of outer mitochondrial membrane (TOM) complex
[15,17]. This complex imports precursor proteins into
mitochondria [18], and dysfunction of this biological pathway
may play a role in cognitive decline and AD pathology
(“mitochondrial cascade hypothesis” [19]). Apoe and Tomm40
proteins may interact to affect mitochondrial dynamics although
the precise mechanisms underlying this are unclear [3,20].

The rs10524523 locus (hereinafter ‘523’) in TOMM40 is
characterised by a variable number of T residues (poly-T
repeats) which can be grouped into ‘Short’ (<20; ‘S’), ‘Long’
(20-29; ‘L’), and ‘Very-Long’ (≥30; ‘VL’) [21]. Using
phylogenetic mapping analyses, Roses et al.[3] showed that
poly-T repeat length was strongly linked with the APOE ε
genotype; ε4 is linked to L, with ε3 linked to either S or VL
alleles. The rarer ε2 allele appeared to show similar linkage to

S or VL alleles in TOMM40 523, as per ε3, although further
research is required.

The functional significance of TOMM40 523 poly-T repeat
length is the subject of ongoing research. Bekris et al.[20] (N =
32) reported that specific TOMM40 523 variants were
associated with lower TOMM40, but not APOE, gene
expression in SHSY5Y neuronal cell lines, indicating a role for
this locus in TOMM40 promoter silencer/enhancer activity.
Studies have reported association between the TOMM40 523
repeat and brain-related phenotypes such as risk of AD
diagnosis [22], earlier/later age of AD clinical onset [3,21,22],
cortisol levels [23] and cognitive change in older age [24],
independent of APOE.

The hippocampus
The hippocampal formation of the brain includes the dentate

gyrus, subiculum, entorhinal cortex, cornu ammonis (CA) areas
1-4 and the hippocampus proper [25,26]. The hippocampus
itself occupies the floor of the temporal horn of the lateral
ventricle. It is typically 4.0 to 4.5 cm long and around 1.5 cm
wide [27].

Braak and Braak [28] outline six stages of neurofibrillary
change in AD pathophysiology, based on the observed
accumulations of neurofibrillary tangles, neuropil threads and
amyloid beta plaques. AD-like neurofibrillary changes have
been reported in the human brain in the absence of significant
cognitive decline [29,30], and are apparent first in the
hippocampal formation [25,31]. Hippocampal atrophy is
associated with a common symptom of AD, namely memory
impairment [1,2].

Hippocampal volumes and APOE ε genotype in healthy older
adults has been examined by a number of small (N range = 20
to 134) brain MRI studies, which vary between showing
significant and null effects e.g[32–36]. and a few much larger
reports including several hundred participants, which also show
varying results [37–42]. These larger reports are likely to be
more reliable, and are summarised in Table 1. Specifically,
possession of the APOE ε4 allele has occasionally been
significantly associated with lower hippocampal volumes in
cross-sectional samples of older adults.

TOMM40 523 poly-T repeat length is linked to APOE
genotype, and as far as we are aware, only one study has so
far examined the independent effects of the TOMM40 523
gene locus on hippocampal volumes in healthy older adults.
Johnson et al.[43] tested for an effect of poly-T repeat length
genotype on a whole-brain voxel-wise comparison of grey
matter volumes in participants with the APOE ε3/ε3 genotype
(N = 117, mean age = 55.47 years, SD = 6.00), and found no
significant effect of poly-T repeat genotype on hippocampal
volume. A recent large-scale genome wide association study in
healthy adults (N = 5776) reported no significant associations
with SNPs in the TOMM40 gene however did not directly
analyse the TOMM40 523 poly-T repeat locus [44].

The Lothian Birth Cohort 1936 [45] (LBC1936) is large group
of relatively healthy older adults of a narrow age range, that
have undergone detailed brain MRI and APOE/TOMM40
genotyping. The current study aims to add to the literature by
investigating: 1) the effects of APOE ε and 2) the independent

APOE, TOMM40 and Hippocampal Volumes
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effects of the TOMM40 523 poly-T repeat length, on
hippocampal volumes in the LBC1936.

Methods

Sample and procedure
The LBC1936 consists of 1091 community-dwelling adults

most of whom completed the Moray House Test no.12 of
verbal reasoning as part of the Scottish Mental Survey of 1947
at a mean age of 11 years [46]. The recruitment and testing of
this sample has been described in detail elsewhere [45,47]. In
the first wave of the LBC1936 study (‘Wave 1’), around age 70
years, they underwent detailed cognitive, sociodemographic,
and physical assessments [45]. The sample was generally
healthy; participants with current acute severe illness were
excluded. Around three years later, members of the cohort
returned for re-testing. At that time detailed structural brain MRI
was added in what was the second wave of the study (‘Wave 2’
[48]). Participants were screened for cognitive impairment with
the Mini-Mental State Examination (MMSE), with scores under
24 used to indicate possible dementia [49]. Diagnoses of
clinical disorders were elicited via interview.

Ethics statement
Ethics permission for the study protocol was obtained from

the Multi-Centre Research Ethics Committee for Scotland
(MREC/01/0/56) and from The Lothian Research Ethics
Committee (LREC/2003/2/29), in accordance with the
Declaration of Helsinki, and all participants gave written,
informed consent [45].

Genotyping
DNA was isolated from whole blood, and the APOE SNPs

rs7412 and rs429358 SNPs genotyped with TaqMan
technology. These two SNPs form the APOE ε2/ε3/ε4
haplotype. TOMM40 523 poly-T repeat length was genotyped
by the laboratory of Dr. Ornit Chiba-Falek (Duke University,
NC, USA) using a method described previously [50]. Briefly,
each genomic DNA sample was amplified by the polymerase
chain reaction (PCR) using fluorescently labelled forward
5’FAM-TGCTGACCTCAAGCTGTCCTG-3’ and reverse 5’-
GAGGCTGAGAAGGGAGGATT-3’primers. Genotypes were
determined on an ABI 3730 DNA Analyzer, using GeneMapper
version 4.0 software (Applied Biosystems, Foster City,
California, USA) for fragment analysis by the amplified
fragment length polymorphism method validated for research
studies and commercially available.

Table 1. Summary of previous large cross-sectional studies (i.e. N > 135) examining APOE ε4 genotype and hippocampal
volumes in non-demented, community dwelling older adults.

Authors

Technique used in correcting
hippocampal volumes for
head size

Sample
N   

Mean age in
years
(Standard
Deviation) Covariates Main findings

Statistics (hippocampal
volumes)

LeMaitre et al.
[37]

Hippocampal volumes
expressed as a percentage
fraction of intracranial volume.

750 69.4 (2.9)

Gender (controlled),
age, education,
diagnosis of
hypertension, Mini
Mental State Exam
score (no group
differences; P > 0.05)

Significant deleterious effect of
ε4/ε4 genotype (vs. non-ε4
carriers).

Left: ε4/ε4 = 0.23%, vs. non-ε4/
= 0.26% (p <0.001). Right ε4/ε4
= 0.22% vs. non-ε4 = 0.24% (p
= 0.006)

Den Heijer et al.
[38]

Midsagittal area included as
model covariate.

949 72.3 (7.0) Age, gender.
Significant deleterious effect of
ε4 allele presence (vs. non-ε4
carriers).

Left: ε4+ difference to ɛ3/ɛ3
genotype = -0.11 millilitres.
Right: ε4+ difference to ɛ3/ɛ3
genotype = -0.11 milliliters.

Cherbuin et al.
[39]

Intracranial volume included
as model covariate.

331 62.6 (1.4) Age, gender, education.
No significant main effects of ε4
allele (P > 0.05).

-

Panizzon et al.
[40]

Intracranial volume included
as a model covariate.

375 55.9 (2.6)
Relatedness between
twins, handedness,
age.

No significant main effects of ε4
allele (P > 0.05).

-

Ferencz et. al.
[41]

Intracranial volume included
as a model covariate.

424 69.9 (8.6) Age.
No significant main effects of ε4
allele (P > 0.05).

-

Hostage et al.
[42]

Intracranial volume included
as a model covariate.

198 76.0 (0.5) Age
No significant main effects of ε4
allele (P > 0.05).

-

Note. The age mean and standard deviation data provided above for Lemaitre et al., Den Heijer et al. and Hostage et al. are weighted estimates; see those reports for exact
age data
doi: 10.1371/journal.pone.0080513.t001
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MRI analysis
LBC1936 MRI data acquisition and processing is described

in detail by the protocol paper, by Wardlaw et al. [48].
Participants underwent whole brain structural MRI acquired
using a GE Signa Horizon 1.5 T HDxt clinical scanner (General
Electric, Milwaukee, USA) equipped with a self-shielding
gradient set (33 mT m-1 maximum gradient strength) and
manufacturer supplied 8-channel phased-array head coil [48].
In addition to standard structural T2-, T2*- and FLAIR-weighted
MRI, the imaging protocol included a high-resolution T1-
weighted volume sequence acquired in the coronal plane with
field-of-view 256 × 256 mm, imaging matrix 192 × 192 (zero-
filled to 256 × 256), 160 1.3mm thick slices giving 1 × 1 × 1.3
mm voxel dimensions. The repetition, echo and inversion times
were 10, 4 and 500 ms respectively.

Left and right hippocampal volumes were semi-automatically
segmented using FSL (http://fsl.fmrib.ox.ac.uk) with manual
correction. High resolution T1-weighted volume scans were
passed through FSL’s FIRST automated segmentation
software to create volume masks for left and right
hippocampus, based on standard protocols (http://
www.fmrib.ox.ac.uk/fsl/first/index.html). Noise reduction was
applied to the resulting volumes which were then registered
using FSL FLIRT to a locally developed template of similarly
older brains. A second registration to an optimised sub-cortical
mask was then performed followed by boundary correction,
with the resulting masks visually assessed for accuracy and
manually edited using Analyse 9.0 (http://
www.analyzedirect.com) where discrepancies occurred. This
method has been validated against the ‘gold-standard’
approach of manual tracing [48].

Intracranial volume measurements were obtained semi-
automatically using the T2*-weighted sequence [48], and
included the contents of the inner skull, with an inferior limit in
the axial slice just superior to the tip of the odontoid peg at the
foramen magnum and superior to the inferior limits of the
cerebellar tonsils. Total brain tissue volumes were obtained
using T2*-weighted with FLAIR to obtain a surrogate
cerebrospinal fluid (CSF) mask (volume) that contained CSF,
venous sinuses and the meninges. The volume of ‘CSF+veins
+meninges’ was used to estimate total brain tissue volume by
subtracting it from intracranial volume [48].

Statistical Analysis

Statistical models
All models controlled for gender and age in days at

neuroimaging. An online calculator was used to perform tests
of Hardy-Weinberg equilibrium and determine minor allele
frequencies [51]. Data were otherwise analysed with the
Predictive Analytics SoftWare (version 17; http://
www-01.ibm.com/software) statistics programme. Specifically,
univariate general linear models (GLMs) tested the effects of
separate APOE and TOMM40 genotypes upon left/right
hippocampal volumes. Raw P-values < 0.05 were considered
significant.

It is important to correct (commonly and herein ‘normalize’)
left and right hippocampal volumes relative to an individual’s

head or brain size. To this end, left/right hippocampal volumes
were analysed in three separate ways, controlling for age and
gender throughout. First, left/right hippocampal volumes were
examined raw. Second, hippocampal volumes were analysed
with intracranial volume as an additional model covariate,
reflecting maximum lifetime brain volume as a general proxy for
head size. Finally, hippocampal volumes were analysed with
current total brain tissue volume as an additional model
covariate, to ensure that any significant genetic associations
with hippocampal volume were not reflective of more general
brain atrophy [52].

Regression-based normalization more comprehensively
eliminates variance in hippocampal volume that is associated
with intracranial or current brain tissue volumes, compared with
proportional percentile- or ratio-based corrections [52–54].
Rather than creating new variables reflecting ‘left/right
hippocampal volumes residualized for intracranial/total brain
tissue volumes’, where appropriate we included intracranial/
total brain tissue volumes as model covariates in addition to
gender and age. This is preferable because it also adjusts for
any effects that gender and age may have on associations
between hippocampal and intracranial/total brain tissue
volumes [55].

APOE analysis
The APOE ε haplotype is composed of any two of the ε2

(protective), ε3 (neutral) and ε4 (risk) alleles. The first analytic
step tested the effects of APOE ε4 allele presence vs.
absence, i.e. pooled ε2/ ε4, ε3/ε4 & ε4/ ε4 genotypes vs.
pooled ε2/ ε2, ε2/ε3 & ε3/ ε3 (‘Step 1’). In the next step,
genotypes which may be protective for neurodegenerative
pathology were compared with the neutral genotype; i.e.;
pooled ε2/ε3 & ε2/ε2 against ε3/ε3 (‘Step 2’) [9,56].

TOMM40 analysis
Length of the variable-length poly-T repeat rs10524523

(‘523’) was split into three categories: ‘S’ (<20 T residues), ‘L’
(20-29) and ‘VL’ (≥ 30) [21]. In the first analytic step, in the
whole sample, a GLM tested for a significant effect of TOMM40
523 genotype (i.e. S/S; S/L; L/L; L/VL; VL/VL; ‘Step 1’). To
investigate the effects of TOMM40 523 repeat length
independent of APOE ε genotype, analysis focussed
separately on two different APOE ε subgroups; firstly
participants with the ε3/ε4 genotype (‘Step 2’). Devi et al.[57]
reported that in a sample of adults diagnosed with AD, this
genotype had the highest accumulation of amyloid precursor
protein (APP) in mitochondria (versus ε3/ε3 and ε4/ε4
genotypes; assessed by immunoblot analysis). This
accumulation correlated significantly with two indicators of
mitochondrial dysfunction, namely cytochrome C oxidase
activity and reactive oxygen species hydrogen peroxide
(‘H2O2’). Presence of the S allele may play a role in a possible
interaction between APP accumulation/mitochondrial
translocase processes [23]. Finally, analysis focussed on
participants with the neutral APOE genotype (ε3/ε3) (‘Step 3’),
because this eliminates variance associated with protective
and risk APOE alleles [3].

APOE, TOMM40 and Hippocampal Volumes
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In large sample of Caucasians, linkage between the APOE ε
genotype and TOMM40 523 length (i.e. ε4 links primarily to ‘L’,
ε3 primarily to ‘S’ or ‘VL’) is such that in the APOE ε3/ε3
genotype, relatively few L carriers would be predicted while in
the ε3/ε4 genotype typically one L allele would be predicted in
addition to either an S or VL allele [50]. Slight errors in poly-T
repeat length measurement may occur through PCR ‘slippage’
and this may result in repeat lengths that are close to the L/VL
boundary being incorrectly classified [50]. To attempt to control
for this, in Steps 2 and 3, the L and VL alleles were pooled into
an ‘L*’ group; participants with the S/S genotype were
compared with those carrying only one S allele (pooled S/L and
S/VL; hereinafter S/L*), and also against participants carrying
no S alleles (pooled L/L, L/VL and VL/VL; hereinafter L*/L*)
[58]. A GLM therefore tested for effects of S-allele dosage (S/S;
S/L*; L*/L*) on hippocampal volume variables in Steps 2 and 3
(APOE ε3/ε4 and ε3/ε3 subgroups respectively).

Results

Descriptive statistics
Of the 1091 total LBC1936 participants, 866 attended Waves

1 and 2, and 700 underwent neuroimaging. Individuals with
MRI data were excluded if they had MMSE scores below 24 (n
= 5) or not completed at Wave 2 (n = 1). No participants
reported dementia. Overall, this left 694 participants of which
655 had successfully segmented left and right hippocampal
volumes. Demographic and clinical statistics for the sample are
shown in Table 2. Of these, 624 and 636 participants had
successful genotyping for APOE ε and TOMM40 523,
respectively.

APOE had allele frequencies of ε2 = 7.4%, ε3 = 76.9% and
ε4 = 15.7%, with genotype frequencies of: ε2/ε2 = 2 (0.3%),
ε2/ε3 = 83 (12.0%), ε2/ε4 = 15 (2.2%), ε3/ε3 = 401 (58.2%),
ε3/ε4 = 175 (25.4%) and ε4/ε4 = 13 (1.9%). TOMM40 523 had
allele frequencies of S = 41.0%, L = 15.4% and VL = 43.6%,
with genotype frequencies of S/S = 106 (15.2%), S/L = 103

Table 2. Basic demographic and clinical data for the current
sample.

 N
Current sample N 655
Gender: N that are female (% of total) 312 (47.6)
Age in years at clinic visit near to time of MRI (SD) 72.7 (0.7)
MMSE score (SD) 28.9 (1.3)
History of hypertension: N (% of total) 324 (49.5)
History of diabetes: N (% of total) 67 (10.2)
History of high cholesterol: N (% of total) 275 (42.0)
History of other cardiovascular disease: N (% of total) 179 (27.3)
History of stroke: N (% of total) 44 (6.7)

Note. SD = standard deviation, MMSE = Mini-Mental State Exam (maximum score
of 30). These data are based on the sample of participants with successfully
segmented hippocampal volumes, once those participants with reported dementia,
or with MMSE scores ≤24 (or missing) around the time of MRI, were removed.
doi: 10.1371/journal.pone.0080513.t002

(14.7%), S/VL = 259 (37.1%), L/L = 16 (2.3%), L/VL = 80
(11.4%) and VL/VL = 135 (19.3%). Exact tests confirmed that
APOE ε and TOMM40 523 genotypes were in Hardy-Weinberg
equilibrium (P values = 0.449 and 0.111 respectively).
Descriptive statistics for brain imaging variables are shown in
Table 3, and intercorrelations between intracranial, total brain
tissue and hippocampal volumes in mm3 are presented in
Table 4, showing medium to strong statistically significant
intercorrelations. Reported volumes are similar to those in
independent samples [52].

APOE ε, TOMM40 523 poly-T repeat and hippocampal
volumes

There was no effect of the APOE ε4 present vs. absent
comparison (Step 1), nor pooled ε2/ε3; ε2/ε2 genotype (vs. ε3/
ε3; Step 2) on hippocampal volumes analysed raw, or
normalized for either intracranial or total brain tissue volumes
(all P > 0.05; see Table 5).

No effects of TOMM40 523 poly-T repeat genotype were
found in the whole sample (Step 1), nor in subgroup analyses
of APOE ε3/ε4 (Step 2) or ε3/ε3 genotypes specifically (Step 3)
for any of raw or normalized hippocampal volumes (all P >
0.05; see Table 6).

Additional comparative analysis
To permit comparison with other reports that use alternative

methods of normalization for head size – namely, reporting
hippocampal volumes as an absolute proportion of total
intracranial volume – the above main results were re-run using
the formula “Left-or-right hippocampal volume in mm3 /
intracranial volume in mm3 x 1000” [59]. Re-analysis showed
that the main results were for the most part unchanged, i.e. not
significant at P < 0.05. One exception was that for the APOE ε4
present vs. absent comparison, there was a significant
deleterious effect of the ε4 allele for the right hippocampus (F
[1, 620] = 4.54, P = 0.034, η2 = 0.007).

To check the extent to which left and right hippocampal
‘ratios’ were independent of intracranial volume, unadjusted
bivariate correlations were run. Intracranial volume correlated
significantly with left (r = -0.26) and right (r = -0.28)
hippocampal volumes expressed as a proportion of intracranial
volume (both P < 0.001), indicating a lack of true
independence.

Discussion

Overview
The current study investigated the effects of the APOE ε and

TOMM40 rs10524523 (‘523)’ poly-T repeat gene loci on
hippocampal volumes - raw and also corrected (commonly and
herein referred to as ‘normalized’) separately for intracranial
and total brain tissue volumes - in the LBC1936. This
normalization was implemented because we aimed to test for
genetic influence on the hippocampus independent of any
possible effects on intracranial or total brain tissue volumes.
We report no significant effects of genetic variation at either the
APOE ε or TOMM40 523 loci, on left or right hippocampal
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volumes, when analysed either raw or normalized by
intracranial or total brain tissue volumes.

Hippocampal volumes and APOE have been investigated in
a number of previous reports, the majority of which were
relatively small (N < 135). TOMM40 523 and hippocampal
volumes have been investigated by one previous study [43],
however that report examined specifically participants with the
APOE ε3/ε3 genotype (N = 117), and found no significant
associations. The current study tested the TOMM40 523 locus

in a larger sample of older adults and included all APOE ε
genotypes (n = 623), ε3/ε4 carriers only (n = 160), and ε3/ε3
carriers only (n = 376), and found no effect of poly-T repeat
length genotype.

Interpretation: APOE ε
Previous large studies have reported significant effects of

APOE ε genotype on hippocampal volumes in healthy older
adults [37,38]. In a similarly large sample of older adults, we

Table 3. Descriptive statistics for raw hippocampal, intracranial and total brain tissue volumes, grouped by genotype.

Genotype
(mean; standard
error)

Left raw
hippocampal
volume

Right raw
hippocampal
volume

Intracranial
volume

Total brain tissue
volume

Left hippocampal
volume (ICV-
corrected)

Right
hippocampal
volume (ICV-
corrected)

Left hippocampal
volume (TBV-
corrected)

Right
hippocampal
volume (TBV-
corrected)

APOE ε         

ɛ4 absent 3094.41 (20.36) 3335.06 (19.98)
1,442,258.32
(4985.87)

1,119,764.90
(4316.47)

3104.24 (19.46) 3344.71 (19.10) 3100.36 (18.95) 3341.09 (18.48)

ɛ4 present 3084.16 (31.25) 3317.20 (30.67)
1,468,448.23
(7694.48)

1,130,853.17
(6671.72)

3061.01 (29.96) 3294.47 (29.40) 3070.30 (29.19) 3302.68 (28.46)

ɛ2 present 3038.94 (46.42) 3315.15 (45.79)
1,449,976.37
(11,760.64)

1,127,564.58
(10,219.88)

3031.03 (43.36) 3308.35 (43.53) 3024.76 (42.08) 3301.68 (41.85)

ɛ3/ɛ3 3103.94 (21.33) 3337.77 (21.04)
1,440,660.88
(5400.47)

1,127,674.58
(4663.18)

3105.62 (19.92) 3339.22 (20.00) 3106.96 (19.33) 3340.64 (19.22)

TOMM40 ‘523’         

Short/Short 3135.63 (44.01) 3360.83 (43.15)
1,442,116.02
(10,827.43)

1,126,441.85
(9377.16)

3144.34 (41.91) 3369.50 (41.02) 3133.37 (40.89) 3358.46 (39.79)

Short/Long 3174.39 (43.76) 3401.25 (42.90)
1,473,374.04
(10,880.91)

1,137,288.23
(9472.76)

3146.15 (41.81) 3373.14 (40.92) 3154.67 (40.93) 3380.33 (39.83)

Short/Very-
Long

3076.52 (27.96) 3331.20 (27.41)
1,436,902.51
(6871.98)

1,116,375.69
(5951.29)

3093.33 (26.69) 3347.93 (26.13) 3087.99 (25.99) 3342.88 (25.30)

Long/Long
3104.79
(110.00)

3331.20 (27.41)
1,487,577.11
(27,496.05)

1,145,780.72
(23,812.37)

3059.36
(104.87)

3356.94
(102.65)

3066.82
(102.25)

3363.22 (99.52)

Long/Very-
Long

3028.12 (49.65)
3402.16
(107.85)

1,463,850.24
(12,244.22)

1,127,040.17
(10,603.84)

3009.19 (47.32) 3243.97 (46.32) 3017.10 (46.13) 3251.47 (44.90)

Very-Long/
Very-Long

3057.69 (37.24) 3301.85 (36.51)
1,450,239.49
(9307.98)

1,119,956.79
(8060.97)

3057.88 (35.45) 3302.04 (34.70) 3064.65 (34.60) 3308.92 (33.67)

Note. All volumes are in mm3, estimated marginal means adjusted for age and gender. ICV-corrected = additionally adjusted for intracranial volume, TBV-corrected =
additionally adjusted for total brain tissue volume.
doi: 10.1371/journal.pone.0080513.t003

Table 5. Apolipoprotein-e (APOE) ε genotype and hippocampal volumes.

Volume in mm3 ɛ4 allele presence vs. absence ɛ2/ɛ3 & ɛ2/ɛ2 vs. ɛ3/ɛ3

 d.f. & F statistics P Partial η2 d.f. & F statistics P Partial η2

Left raw hippocampal volume 1, 620 = 0.08 0.784 0.000 1, 434 = 1.61 0.205 0.004
Right raw hippocampal volume 1, 620 = 0.24 0.626 0.000 1, 434 = 0.20 0.654 0.000
Left hippocampal volume (ICV-corrected) 1, 619 = 1.45 0.228 0.002 1, 433 = 2.43 0.120 0.006
Right hippocampal volume (ICV-corrected) 1, 619 = 2.04 0.154 0.003 1, 433 = 0.41 0.521 0.001
Left hippocampal volume (TBV-corrected) 1, 618 = 0.75 0.388 0.001 1, 433 = 3.12 0.077 0.007
Right hippocampal volume (TBV-corrected) 1, 618 = 1.28 0.258 0.002 1, 433 = 0.71 0.399 0.002

Note. Age at time of testing and gender statistically controlled. ICV-corrected = intracranial volume included as a covariate, TBV-corrected = total brain tissue volume
included as a covariate.
doi: 10.1371/journal.pone.0080513.t005
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did not replicate these, and instead echo other large reports
which show no association with genetic variation at the APOE
locus [39–41]. There is no evidence that large positive studies
by LeMaitre et al. [37] (mean age = 69.2; mean MMSE = 27.3)
or Den Heijer et al.[38] (mean age = 72.0 years; mean MMSE
score = 27.4) were composed of markedly more cognitively
impaired or younger/older subjects than those reported here
(mean age = 72.7, mean MMSE = 28.8). The discrepancy may
reflect type 1 error in previous reports. Part of the discrepancy
may also relate to normalization technique. Previous studies
vary in how they normalize left and right hippocampal volumes
- namely they use either ‘ratio’ (e.g. Lemaitre et al.[37]) or
‘covariance’ techniques (e.g. Den Heijer et al. [38]). Above in
our main results we report on hippocampal volumes covaried
separately for intracranial and brain tissue volumes as we
believe this to be the most appropriate correction (see below
[52–54]).

To permit comparison with other reports, the main results
were additionally re-analysed with hippocampal volumes
normalized as a ratio of intracranial volume. The results were
unchanged except for a significant deleterious effect of APOE
ε4 allele presence vs. absence. However, we judge that
statistically controlling for intracranial volume is the more
appropriate normalization technique for the following reasons:

Table 4. Inter-correlations between hippocampal,
intracranial and total brain tissue volumes.

 

Left
hippocampal
volume

Right
hippocampal
volume

Intracranial
volume

Total brain
tissue
volume

Left hippocampal
volume

- 0.78 0.40 0.47

Right hippocampal
volume

0.78 - 0.45 0.50

Intracranial volume 0.40 0.45 - 0.87
Current brain
tissue volume

0.47 0.50 0.87 -

Note. Unadjusted Pearson bivariate correlations. All volumes are raw in mm3, and
figures reflect ‘r’ correlations. All associations were significant at P <0.001.
doi: 10.1371/journal.pone.0080513.t004

1 Ratio measures do not completely eliminate association
between head size and hippocampal volume [52–54]. Further
analysis showed that hippocampal volumes expressed as a
ratio of intracranial volume correlated significantly with
intracranial volume itself. Ratios therefore do not allow for an
assessment of APOE, TOMM40 and hippocampal volume
completely independent of head size, which was the main aim
of the current study.

2 Any disparity between genotype groups as assessed by
ratios may reflect differences in any of the numerator
(hippocampus), the denominator (intracranial volume) or their
interaction, reduced to one variable. This is less informative
than regression techniques which take into account the
strength of association between the specific brain structure and
the larger denominator [52,54].

Critically reviewing previous reports further, we are aware of
no study that corrects significant APOE-hippocampal volume
associations for current total brain tissue volume. MacLullich et
al.[60] reported in a sample of older adults (N = 97, age range
= 65-70 years), that left/right hippocampal, frontal lobe,
temporal lobe and intracranial volumes strongly and positively
intercorrelated with one another (r range = 0.29 to 0.83, all P <
0.005). Data reduction with principal component analysis
showed that these loaded strongly and significantly onto a
‘general brain size’ factor (range of loadings = 0.64 to 0.73, P <
0.05). Intracranial volume is relatively constant throughout the
lifespan, while actual brain tissue volume is susceptible to age-
related change[61]. Given that we are aware of no previous
study that reports significant APOE-hippocampal volume
associations in older adults that also controls for current total
brain tissue volume, we cannot exclude the possibility that
those associations may be secondary to more generalized
brain atrophy[38][60,62][63]. (Note however that Den Heijer et
al. [38] reported no significant ε4 effect on semi-qualitative
observer-rated cortical atrophy; ranged 0-3 at various
locations). It is also unclear whether previous large significant
positive studies have assumed normal distributions for
normalized hippocampal volumes in older-age samples, as this
may introduce errors in analysis and increase the risk of
spurious results.

Table 6. Translocase of outer membrane 40 (TOMM40) ‘523’ poly-T repeat genotype and hippocampal volumes.

Volume in mm3 Whole sample ɛ3/ɛ4 genotype subgroup ɛ3/ɛ3 genotype subgroup

 d.f. & F statistics P Partial η2 d.f. & F statistics P Partial η2 d.f. & F statistics P Partial η2

Left raw hippocampal volume 5, 628 = 1.47 0.198 0.012 1, 156 = 1.42 0.235 0.009 2, 349 = 1.32 0.268 0.008
Right raw hippocampal volume 5, 628 = 1.23 0.292 0.010 1, 156 = 0.61 0.435 0.004 2, 349 = 1.57 0.210 0.009
Left hippocampal volume (ICV-corrected) 5, 627 = 1.47 0.198 0.012 1, 155 = 1.22 0.271 0.008 2, 348 = 1.15 0.316 0.007
Right hippocampal volume (ICV-corrected) 5, 627 = 1.33 0.250 0.010 1, 155 = 0.429 0.513 0.003 2, 348 = 1.70 0.184 0.010
Left hippocampal volume (TBV-corrected) 5, 626 = 1.34 0.244 0.011 1, 154 = 1.55 0.216 0.010 2, 348 = 0.79 0.455 0.005
Right hippocampal volume (TBV-corrected) 5, 626 = 1.18 0.319 0.009 1, 154 = 0.67 0.415 0.004 2, 348 = 1.30 0.274 0.007

Note. Age at time of testing and gender statistically controlled. ICV-corrected = intracranial volume included as a covariate, TBV-corrected = total brain tissue volume
included as a covariate.
doi: 10.1371/journal.pone.0080513.t006
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Interpretation: TOMM40 ‘523’ poly-T repeat
No effects of TOMM40 523 were found, and this could be

cautiously interpreted in terms of different explanations, given
the absence of further relevant data. Specifically:

1 The TOMM40 523 repeat does not significantly affect
mitochondrial function [20,22,64].

2 TOMM40 523 locus does affect mitochondrial function, but
not to an extent that affects hippocampal volume (the outcome
variable) in this sample: the mitochondrial cascade hypothesis
describes a ‘threshold’ beyond which mitochondrial mutations
are not adequately compensated for and significant histology
resembling AD emerges [25,29]. Perhaps hippocampal volume
assessed by MRI is unaffected before this threshold [19].

3 The effect of TOMM40 523 length is moderated by or
interacts with additional genetic variants for example loci in LD
with APOE or TOMM40 such as APOC1 [20]. It may also be
possible to investigate the possibility of moderation of
TOMM40/APOE effects by other genetic factors; however,
despite the relatively large sample size (by brain imaging
standards), this would be statistically challenging.

Future research
Specific subregions of the hippocampal formation may be

more vulnerable to brain ageing or incipient AD pathology, and
therefore more sensitive to variations at specific relevant
genetic loci. Devanand et al.[65] reported that subregions of
the hippocampus differentially predicted longitudinal diagnosis
of clinical AD over three years, in a sample of individuals with
amnestic mild cognitive impairment (N = 130, of which 31
converted to AD; baseline MMSE scores all >22). Controlling
for age, gender, years of education, and intracranial volume,
cox regression analyses showed that volumes in the cornu
ammonis 1 (left hazard ratio = 0.22, P = 0.054, right hazard
ratio = 0.23, P = 0.06) and subiculum subregions (left hazard
ratio = 0.22, P = 0.054, right hazard ratio = 0.22, p = 0.03) were
more predictive of longitudinal AD diagnosis compared with
entorhinal cortical volume (right hazard ratio = 0.05, P = 0.06,
left hazard ratio = 0.02, P = 0.26). Future studies of
hippocampal volume in the LBC1936 may therefore consider
more fine-grained analysis of the hippocampal formation as
genetic variation at the APOE or TOMM40 loci may affect
specific subregions first. Functional brain MRI may also be a
more sensitive marker of hippocampal dysfunction, compared
with left/right volumes as assessed here by structural MRI.

It is possible that the current sample of non-demented,
generally healthy older adults (aged around 73 years) have not
undergone sufficient volumetric hippocampal or brain atrophy
to show significant differentiation according to genotype. The
sample examined here is undergoing repeat structural brain
MRI, around the age of 76. Significant associations with APOE

or TOMM40 genotypes may become apparent at this older
age, after more age-related atrophy.

Summary

This study examined the independent effects of variation at
the APOE ɛ and the TOMM40 523 poly-T repeat gene loci
upon hippocampal volume assessed raw and also normalized
separately for intracranial and total brain tissue volumes.
Previous large studies have occasionally reported significant
associations between the APOE ε4 allele and lower
hippocampal volumes. The current study does not replicate
those significant reports in a community dwelling sample of
older adults of homogenous ages. Previous significant findings
may reflect type 1 error, or partly reflect discrepancies in how
the hippocampus has been normalized relative to head size in
different studies. We can see no obvious evidence that
previously examined healthy older samples differed markedly
from the current sample, either in terms of age or prevalence of
cognitive decline (based on average MMSE scores). Studies
that show significant genetic associations with the
hippocampus should run further confirmatory analysis to
investigate whether associations are independent of general
volumetric brain atrophy. We also found no significant effects of
TOMM40 523 poly-T repeat length. Future studies may
investigate specific subregions of the hippocampal formation;
there may be effects of the APOE or TOMM40 523 genetic loci
that are not manifest in overall hippocampal volume.
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