26 research outputs found

    Low-dose ionizing radiation modulates the expression of proangiogenic genes in critical limb ischemia patients : preliminary results

    Get PDF
    © 2019 Published by Elsevier Inc.Objective: Low-dose ionizing radiation (LDIR), namely, 0.3 Gy, delivered during 4 consecutive days, has been reported to stimulate angiogenesis and arteriogenesis in a preclinical model of hindlimb ischemia. Here we performed a single-center, investigator-blinded, randomized, shamcontrolled clinical trial to evaluate the effects of LDIR exposure in the expression of proangiogenic genes in endothelial cells isolated from muscles of patients with critical limb ischemia.info:eu-repo/semantics/publishedVersio

    Echocardiographic assessment of cardiac anatomy and function in adult rats

    Get PDF
    Copyright © 2019 Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported LicenseThe use of experimental animal models has become crucial in cardiovascular science. Most studies using rodent models are focused on two-dimensional imaging to study the cardiac anatomy of the left ventricle and M-mode echo to assess its dimensions. However, this could limit a comprehensive study. Herein, we describe a protocol that allows an assessment of the heart chamber size, left ventricular function (systolic and diastolic) and valvular function. A conventional medical ultrasound machine was used in this protocol and different echo views were obtained through left parasternal, apical and suprasternal windows. In the left parasternal window, the long and short axis were acquired to analyze left chamber dimensions, right ventricle and pulmonary artery dimensions, and mitral, pulmonary and aortic valve function. The apical window allows the measurement of heart chamber dimensions and evaluation of systolic and diastolic parameters. It also allows Doppler assessment with detection and quantification of heart valve disturbances (regurgitation or stenosis). Different segments and walls of the left ventricle are visualized throughout all views. Finally, the ascending aorta, aortic arch, and descending aorta can be imaged through the suprasternal window. A combination of ultrasound imaging, Doppler flow and tissue Doppler assessment have been obtained to study cardiac morphology and function. This represents an important contribution to improve the assessment of cardiac function in adult rats with impact for research using these animal models.info:eu-repo/semantics/publishedVersio

    Subclinical Left Ventricular Dysfunction Detected by Speckle-Tracking Echocardiography in Breast Cancer Patients Treated With Radiation Therapy:A Six-Month Follow-Up Analysis (MEDIRAD EARLY‐HEART study)

    Get PDF
    Copyright © 2022 Locquet, Spoor, Crijns, van der Harst, Eraso, Guedea, Fiuza, Santos, Combs, Borm, Mousseaux, Gencer, Frija, Cardis, Langendijk and Jacob. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Background: In the case of breast cancer (BC), radiotherapy (RT) helps reduce locoregional recurrence and BC-related deaths but can lead to cardiotoxicity, resulting in an increased risk of long-term major cardiovascular events. It is therefore of primary importance to early detect subclinical left ventricular (LV) dysfunction in BC patients after RT and to determine the dose-response relationships between cardiac doses and these events. Methods: Within the frame of the MEDIRAD European project (2017-2022), the prospective multicenter EARLY-HEART study (ClinicalTrials.gov Identifier: NCT03297346) included chemotherapy naïve BC women aged 40-75 years and treated with lumpectomy and adjuvant RT. Myocardial strain analysis was provided using speckle-tracking echocardiography performed at baseline and 6 months following RT. A global longitudinal strain (GLS) reduction >15% between baseline and follow-up was defined as a GLS-based subclinical LV dysfunction. Individual patient dose distributions were obtained using multi-atlas-based auto-segmentation of the heart. Dose-volume parameters were studied for the whole heart (WH) and left ventricle (LV). Results: The sample included 186 BC women (57.5 ± 7.9 years, 64% left-sided BC). GLS-based subclinical LV dysfunction was observed in 22 patients (14.4%). These patients had significantly higher cardiac exposure regarding WH and LV doses compared to patients without LV dysfunction (for mean WH dose: 2.66 ± 1.75 Gy versus 1.64 ± 0.96 Gy, p = 0.01). A significantly increased risk of subclinical LV dysfunction was observed with the increase in the dose received to the WH [ORs from 1.13 (V5) to 1.74 (Dmean); p <0.01] and to the LV [ORs from 1.10 (V5) to 1.46 (Dmean); p <0.01]. Based on ROC analysis, the LV-V5 parameter may be the best predictor of the short-term onset of subclinical LV dysfunction. Conclusion: These results highlighted that all cardiac doses were strongly associated with the occurrence of subclinical LV dysfunction arising 6 months after BC RT. Whether measurements of GLS at baseline and 6 months after RT combined with cardiac doses can early predict efficiently subclinical events occurring 24 months after RT remains to be investigated.The European Community’s Horizon 2020 Programme supported the EARLY-HEART study conducted in the frame of the MEDIRAD - Implications of Medical Low Dose Radiation Exposure - project spanning from 2017 to 2021 granted by the Euratom Research and Training Programme 2014-2014 under agreement No. 755523.info:eu-repo/semantics/publishedVersio

    Therapeutic angiogenesis induced by human umbilical cord tissue-derived mesenchymal stromal cells in a murine model of hindlimb ischemia

    Get PDF
    © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: Mesenchymal stem cells derived from human umbilical cord tissue, termed UCX®, have the potential to promote a full range of events leading to tissue regeneration and homeostasis. The main goal of this work was to investigate UCX® action in experimentally induced hindlimb ischemia (HLI). Methods: UCX®, obtained by using a proprietary technology developed by ECBio (Amadora, Portugal), were delivered via intramuscular injection to C57BL/6 females after unilateral HLI induction. Perfusion recovery, capillary and collateral density increase were evaluated by laser doppler, CD31 immunohistochemistry and diaphonisation, respectively. The activation state of endothelial cells (ECs) was analysed after EC isolation by laser capture microdissection microscopy followed by RNA extraction, cDNA synthesis and quantitative RT-PCR analysis. The UCX®-conditioned medium was analysed on Gallios flow cytometer. The capacity of UCX® in promoting tubulogenesis and EC migration was assessed by matrigel tubule formation and wound-healing assay, respectively. Results: We demonstrated that UCX® enhance angiogenesis in vitro via a paracrine effect. Importantly, after HLI induction, UCX® improve blood perfusion by stimulating angiogenesis and arteriogenesis. This is achieved through a new mechanism in which durable and simultaneous upregulation of transforming growth factor β2, angiopoietin 2, fibroblast growth factor 2, and hepatocyte growth factor, in endothelial cells is induced by UCX®. Conclusions: In conclusion, our data demonstrate that UCX® improve the angiogenic potency of endothelial cells in the murine ischemic limb suggesting the potential of UCX® as a new therapeutic tool for critical limb ischemia.This study was partially supported by PORLisboa-FEDER (project QREN 2013/30196 – ClinUCX).info:eu-repo/semantics/publishedVersio

    Low Doses of Ionizing Radiation Promote Tumor Growth and Metastasis by Enhancing Angiogenesis

    Get PDF
    Radiotherapy is a widely used treatment option in cancer. However, recent evidence suggests that doses of ionizing radiation (IR) delivered inside the tumor target volume, during fractionated radiotherapy, can promote tumor invasion and metastasis. Furthermore, the tissues that surround the tumor area are also exposed to low doses of IR that are lower than those delivered inside the tumor mass, because external radiotherapy is delivered to the tumor through multiple radiation beams, in order to prevent damage of organs at risk. The biological effects of these low doses of IR on the healthy tissue surrounding the tumor area, and in particular on the vasculature remain largely to be determined. We found that doses of IR lower or equal to 0.8 Gy enhance endothelial cell migration without impinging on cell proliferation or survival. Moreover, we show that low-dose IR induces a rapid phosphorylation of several endothelial cell proteins, including the Vascular Endothelial Growth Factor (VEGF) Receptor-2 and induces VEGF production in hypoxia mimicking conditions. By activating the VEGF Receptor-2, low-dose IR enhances endothelial cell migration and prevents endothelial cell death promoted by an anti-angiogenic drug, bevacizumab. In addition, we observed that low-dose IR accelerates embryonic angiogenic sprouting during zebrafish development and promotes adult angiogenesis during zebrafish fin regeneration and in the murine Matrigel assay. Using murine experimental models of leukemia and orthotopic breast cancer, we show that low-dose IR promotes tumor growth and metastasis and that these effects were prevented by the administration of a VEGF receptor-tyrosine kinase inhibitor immediately before IR exposure. These findings demonstrate a new mechanism to the understanding of the potential pro-metastatic effect of IR and may provide a new rationale basis to the improvement of current radiotherapy protocols

    Vitamin D-related polymorphisms and vitamin D levels as risk biomarkers of COVID-19 disease severity

    Get PDF
    © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Vitamin D is a fundamental regulator of host defences by activating genes related to innate and adaptive immunity. Previous research shows a correlation between the levels of vitamin D in patients infected with SARS-CoV-2 and the degree of disease severity. This work investigates the impact of the genetic background related to vitamin D pathways on COVID-19 severity. For the first time, the Portuguese population was characterized regarding the prevalence of high impact variants in genes associated with the vitamin D pathways. This study enrolled 517 patients admitted to two tertiary Portuguese hospitals. The serum concentration of 25 (OH)D, was measured in the hospital at the time of patient admission. Genetic variants, 18 variants, in the genes AMDHD1, CYP2R1, CYP24A1, DHCR7, GC, SEC23A, and VDR were analysed. The results show that polymorphisms in the vitamin D binding protein encoded by the GC gene are related to the infection severity (p = 0.005). There is an association between vitamin D polygenic risk score and the serum concentration of 25 (OH)D (p = 0.04). There is an association between 25 (OH)D levels and the survival and fatal outcomes (p = 1.5e-4). The Portuguese population has a higher prevalence of the DHCR7 RS12785878 variant when compared with its prevalence in the European population (19% versus 10%). This study shows a genetic susceptibility for vitamin D deficiency that might explain higher severity degrees in COVID-19 patients. These results reinforce the relevance of personalized strategies in the context of viral diseases.This project was supported by the “Fundação para a Ciência e Tecnologia”, program “Research 4 Covid-19 Apoio especial a projetos de implementação rápida para soluções inovadoras de resposta à pandemia de COVID-19”. It was also partially supported by each institution.info:eu-repo/semantics/publishedVersio

    VEGFR2 Translocates to the Nucleus to Regulate Its Own Transcription

    Get PDF
    Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) is the major mediator of the angiogenic effects of VEGF. In addition to its well known role as a membrane receptor that activates multiple signaling pathways, VEGFR2 also has a nuclear localization. However, what VEGFR2 does in the nucleus is still unknown. In the present report we show that, in endothelial cells, nuclear VEGFR2 interacts with several nuclear proteins, including the Sp1, a transcription factor that has been implicated in the regulation of genes needed for angiogenesis. By in vivo chromatin immunoprecipitation (ChIP) assays, we found that VEGFR2 binds to the Sp1-responsive region of the VEGFR2 proximal promoter. These results were confirmed by EMSA assays, using the same region of the VEGFR2 promoter. Importantly, we show that the VEGFR2 DNA binding is directly linked to the transcriptional activation of the VEGFR2 promoter. By reporter assays, we found that the region between -300/-116 relative to the transcription start site is essential to confer VEGFR2-dependent transcriptional activity. It was previously described that nuclear translocation of the VEGFR2 is dependent on its activation by VEGF. In agreement, we observed that the binding of VEGFR2 to DNA requires VEGF activation, being blocked by Bevacizumab and Sunitinib, two anti-angiogenic agents that inhibit VEGFR2 activation. Our findings demonstrate a new mechanism by which VEGFR2 activates its own promoter that could be involved in amplifying the angiogenic response

    La renovación de la palabra en el bicentenario de la Argentina : los colores de la mirada lingüística

    Get PDF
    El libro reúne trabajos en los que se exponen resultados de investigaciones presentadas por investigadores de Argentina, Chile, Brasil, España, Italia y Alemania en el XII Congreso de la Sociedad Argentina de Lingüística (SAL), Bicentenario: la renovación de la palabra, realizado en Mendoza, Argentina, entre el 6 y el 9 de abril de 2010. Las temáticas abordadas en los 167 capítulos muestran las grandes líneas de investigación que se desarrollan fundamentalmente en nuestro país, pero también en los otros países mencionados arriba, y señalan además las áreas que recién se inician, con poca tradición en nuestro país y que deberían fomentarse. Los trabajos aquí publicados se enmarcan dentro de las siguientes disciplinas y/o campos de investigación: Fonología, Sintaxis, Semántica y Pragmática, Lingüística Cognitiva, Análisis del Discurso, Psicolingüística, Adquisición de la Lengua, Sociolingüística y Dialectología, Didáctica de la lengua, Lingüística Aplicada, Lingüística Computacional, Historia de la Lengua y la Lingüística, Lenguas Aborígenes, Filosofía del Lenguaje, Lexicología y Terminología

    Cooperation between STAT5 and phosphatidylinositol 3-kinase in the IL-3-dependent survival of a bone marrow derived cell line

    No full text
    International audienceCytokine-dependent activation of distinct signaling pathways is a common scheme thought to be required for the subsequent programmation into cell proliferation and survival. The PI 3-kinase/Akt, Ras/MAP kinase, Ras/NFIL3 and JAK/STAT pathways have been shown to participate in cytokine mediated suppression of apoptosis in various cell types. However the relative importance of these signaling pathways seems to depend on the cellular context. In several cases, individual inhibition of each pathway is not sufficient to completely abrogate cytokine mediated cell survival suggesting that cooperation between these pathways is required. Here we showed that individual inhibition of STAT5, PI 3-kinase or MEK activities did not or weakly affected the IL-3 dependent survival of the bone marrow derived Ba/F3 cell line. However, the simultaneous inhibition of STAT5 and PI 3-kinase activities but not that of STAT5 and MEK reduced the IL-3 dependent survival of Ba/F3. Analysis of the expression of the Bcl-2 members indicated that phosphorylation of Bad and Bcl-x expression which are respectively regulated by the PI 3-kinase/Akt pathway and STAT5 probably explain this cooperation. Furthermore, we showed by co-immunoprecipitation studies and pull down experiments with fusion proteins encoding the GST-SH2 domains of p85 that STAT5 in its phosphorylated form interacts with the p85 subunit of the PI 3-kinase. These results indicate that the activations of STAT5 and the PI 3-kinase by IL-3 in Ba/F3 cells are tightly connected and cooperate to mediate IL-3-dependent suppression of apoptosis by modulating Bad phosphorylation and Bcl-x expression

    Toxicological impact of JWH-018 and its phase I metabolite N-(3-hydroxypentyl) on human cell lines

    No full text
    © 2016 Elsevier Ireland Ltd. All rights reserved.The emergence and abuse of synthetic cannabinoids has been increasing as an alternative to cannabis, mainly among youth. As their appearance on the drug market has been recent, the pharmacological and toxicological profiles of these psychoactive substances are poorly understood. Current studies suggest that they have stronger effects compared to their natural alternatives and their metabolites retain affinity towards CB1 receptors in CNS. Since studies on its toxicological properties are scarce, the effects of the drug in human derived cell lines were investigated. The present study was designed to explore the toxicological impact of parent drug versus phase I metabolites of synthetic cannabinoids on human cells with and without CB1 receptor. The human cell line of neuroblastoma SH-SY5Y and human kidney cell line HEK-293T were exposed to JWH-018 and to its N-(3-hydroxypentyl) metabolite. Cell toxicity was evaluated using the MTT and LDH assay. Additionally, a dual staining methodology with fluorescent Annexin V-FITC and propidium iodide was performed to address the question of whether JWH-018 N-(3- hydroxypentyl) metabolite is inducing cell death through apoptosis or necrosis, in HEK293T and SHSY5Y cell lines. The obtained results show that JWH-018 does not cause a statistically significant decrease in cell viability, in contrast to its N-(3-hydroxypentyl) metabolite, which at 25 mM causes a significant decrease in cell viability. Both cell lines are affected by JWH-018 metabolite. Our results point to higher toxicity of JWH-018 metabolite when compared to its parent drug, suggesting a non-CB1 receptor mediated toxicological mechanism. Comparing the results from Annexin V/PI with MTT and LDH assays of SH-SY5Y and HEK293T in the presence of the synthetic cannabinoid metabolite, emerges the picture that cellular viability decreases and associated death is occurring through necrosis.info:eu-repo/semantics/publishedVersio
    corecore