47 research outputs found

    Incidental findings from cancer next generation sequencing panels

    Get PDF
    Next-generation sequencing (NGS) technologies have facilitated multi-gene panel (MGP) testing to detect germline DNA variants in hereditary cancer patients. This sensitive technique can uncover unexpected, non-germline incidental findings indicative of mosaicism, clonal hematopoiesis (CH), or hematologic malignancies. A retrospective chart review was conducted to identify cases of incidental findings from NGS-MGP testing. Inclusion criteria included: 1) multiple pathogenic variants in the same patient; 2) pathogenic variants at a low allele fraction; and/or 3) the presence of pathogenic variants not consistent with family history. Secondary tissue analysis, complete blood count (CBC) and medical record review were conducted to further delineate the etiology of the pathogenic variants. Of 6060 NGS-MGP tests, 24 cases fulfilling our inclusion criteria were identified. Pathogenic variants were detected in TP53, ATM, CHEK2, BRCA1 and APC. 18/24 (75.0%) patients were classified as CH, 3/24 (12.5%) as mosaic, 2/24 (8.3%) related to a hematologic malignancy, and 1/24 (4.2%) as true germline. We describe a case-specific workflow to identify and interpret the nature of incidental findings on NGS-MGP. This workflow will provide oncology and genetic clinics a practical guide for the management and counselling of patients with unexpected NGS-MGP findings

    Hormone Therapy and the Risk of Breast Cancer in BRCA1 Mutation Carriers

    Get PDF
    Background: Hormone therapy (HT) is commonly given to women to alleviate the climacteric symptoms associated with menopause. There is concern that this treatment may increase the risk of breast cancer. The potential association of HT and breast cancer risk is of particular interest to women who carry a mutation in BRCA1 because they face a high lifetime risk of breast cancer and because many of these women take HT after undergoing prophylactic surgical oophorectomy at a young age. Methods: We conducted a matched case-control study of 472 postmenopausal women with a BRCA1 mutation to examine whether or not the use of HT is associated with subsequent risk of breast cancer. Breast cancer case patients and control subjects were matched with respect to age, age at menopause, and type of menopause (surgical or natural). Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated with conditional logistic regression. Statistical tests were two-sided. Results: In this group of BRCA1 mutation carriers, the adjusted OR for breast cancer associated with ever use of HT compared with never use was 0.58 (95% CI = 0.35 to 0.96; P =. 03). In analyses by type of HT, an inverse association with breast cancer risk was observed with use of estrogen only (OR = 0.51, 95% CI = 0.27 to 0.98; P =. 04); the association with use of estrogen plus progesterone was not statistically significant (OR = 0.66, 95% CI = 0.34 to 1.27; P =. 21). Conclusion: Among postmenopausal women with a BRCA1 mutation, HT use was not associated with increased risk of breast cancer; indeed, in this population, it was associated with a decreased risk

    Energy applications of ionic liquids

    Get PDF
    Ionic liquids offer a unique suite of properties that make them important candidates for a number of energy related applications. Cation–anion combinations that exhibit low volatility coupled with high electrochemical and thermal stability, as well as ionic conductivity, create the possibility of designing ideal electrolytes for batteries, super-capacitors, actuators, dye sensitised solar cells and thermoelectrochemical cells. In the field of water splitting to produce hydrogen they have been used to synthesize some of the best performing water oxidation catalysts and some members of the protic ionic liquid family co-catalyse an unusual, very high energy efficiency water oxidation process. As fuel cell electrolytes, the high proton conductivity of some of the protic ionic liquid family offers the potential of fuel cells operating in the optimum temperature region above 100 °C. Beyond electrochemical applications, the low vapour pressure of these liquids, along with their ability to offer tuneable functionality, also makes them ideal as CO2 absorbents for post-combustion CO2 capture. Similarly, the tuneable phase properties of the many members of this large family of salts are also allowing the creation of phase-change thermal energy storage materials having melting points tuned to the application. This perspective article provides an overview of these developing energy related applications of ionic liquids and offers some thoughts on the emerging challenges and opportunities

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    A Comparison of Patient-Reported Outcomes Following Consent for Genetic Testing Using an Oncologist- or Genetic Counselor-Mediated Model of Care

    No full text
    This study compares knowledge, experience and understanding of genetic testing, and psychological outcomes among breast and ovarian cancer patients undergoing multi-gene panel testing via genetic counselor-mediated (GMT) or oncologist-mediated (OMT) testing models. A pragmatic, prospective survey of breast and ovarian cancer patients pursuing genetic testing between January 2017 and August 2019 was conducted at the Princess Margaret Cancer Centre in Toronto, Canada. A total of 120 (80 GMT; 40 OMT) individuals completed a survey administered one week following consent to genetic testing. Compared to OMT, the GMT cohort had higher median knowledge (8 vs. 9; p = 0.025) and experience/understanding scores (8.5 vs. 10; p < 0.001) at the time of genetic testing. Significant differences were noted in the potential psychological concerns experienced, with individuals in the GMT cohort more likely to screen positive in the hereditary predisposition domain of the Psychosocial Aspects of Hereditary Cancer tool (55% vs. 27.5%; p = 0.005), and individuals in the OMT cohort more likely to screen positive in the general emotions domain (65.0% vs. 38.8%; p = 0.007). The results of this study suggest that OMT can be implemented to streamline genetic testing; however, post-test genetic counseling should remain available to all individuals undergoing genetic testing, to ensure any psychologic concerns are addressed and that individuals have a clear understanding of relevant implications and limitations of their test results

    Next-Generation Service Delivery: A Scoping Review of Patient Outcomes Associated with Alternative Models of Genetic Counseling and Genetic Testing for Hereditary Cancer

    No full text
    The combination of increased referral for genetic testing and the current shortage of genetic counselors has necessitated the development and implementation of alternative models of genetic counseling and testing for hereditary cancer assessment. The purpose of this scoping review is to provide an overview of the patient outcomes that are associated with alternative models of genetic testing and genetic counseling for hereditary cancer, including germline-only and tumor testing models. Seven databases were searched, selecting studies that were: (1) full-text articles published ≥2007 or conference abstracts published ≥2015, and (2) assessing patient outcomes of an alternative model of genetic counseling or testing. A total of 79 publications were included for review and synthesis. Data-charting was completed using a data-charting form that was developed by the study team for this review. Seven alternative models were identified, including four models that involved a genetic counselor: telephone, telegenic, group, and embedded genetic counseling models; and three models that did not: mainstreaming, direct, and tumor-first genetic testing models. Overall, these models may be an acceptable alternative to traditional models on knowledge, patient satisfaction, psychosocial measures, and the uptake of genetic testing; however, particular populations may be better served by traditional in-person genetic counseling. As precision medicine initiatives continue to advance, institutions should consider the implementation of new models of genetic service delivery, utilizing a model that will best serve the needs of their unique patient populations
    corecore