60 research outputs found

    Processing single-cell RNA-seq datasets using SingCellaR

    Get PDF
    Single-cell RNA sequencing has led to unprecedented levels of data complexity. Although several computational platforms are available, performing data analyses for multiple datasets remains a significant challenge. Here, we provide a comprehensive analytical protocol to interrogate multiple datasets on SingCellaR, an analysis package in R. This tool can be applied to general single-cell transcriptome analyses. We demonstrate steps for data analyses and visualization using bespoke pipelines, in conjunction with existing analysis tools to study human hematopoietic stem and progenitor cells. For complete details on the use and execution of this protocol, please refer to Roy et al. (2021)

    C/EBP alpha and GATA-2 Mutations Induce Bilineage Acute Erythroid Leukemia through Transformation of a Neomorphic Neutrophil-Erythroid Progenitor

    Get PDF
    Acute erythroid leukemia (AEL) commonly involves both myeloid and erythroid lineage transformation. However, the mutations that cause AEL and the cell(s) that sustain the bilineage leukemia phenotype remain unknown. We here show that combined biallelic Cebpa and Gata2 zinc finger-1 (ZnF1) mutations cooperatively induce bilineage AEL, and that the major leukemia-initiating cell (LIC) population has a neutrophil-monocyte progenitor (NMP) phenotype. In pre-leukemic NMPs Cebpa and Gata2 mutations synergize by increasing erythroid transcription factor (TF) expression and erythroid TF chromatin access, respectively, thereby installing ectopic erythroid potential. This erythroid-permissive chromatin conformation is retained in bilineage LICs. These results demonstrate that synergistic transcriptional and epigenetic reprogramming by leukemia-initiating mutations can generate neomorphic pre-leukemic progenitors, defining the lineage identity of the resulting leukemia

    The Generation Challenge Programme comparative plant stress-responsive gene catalogue

    Get PDF
    The Generation Challenge Programme (GCP; www.generationcp.org) has developed an online resource documenting stress-responsive genes comparatively across plant species. This public resource is a compendium of protein families, phylogenetic trees, multiple sequence alignments (MSA) and associated experimental evidence. The central objective of this resource is to elucidate orthologous and paralogous relationships between plant genes that may be involved in response to environmental stress, mainly abiotic stresses such as water deficit (‘drought’). The web-based graphical user interface (GUI) of the resource includes query and visualization tools that allow diverse searches and browsing of the underlying project database. The web interface can be accessed at http://dayhoff.generationcp.org

    Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia

    Get PDF
    Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis

    Alternative platelet differentiation pathways initiated by nonhierarchically related hematopoietic stem cells

    Get PDF
    Rare multipotent stem cells replenish millions of blood cells per second through a time-consuming process, passing through multiple stages of increasingly lineage-restricted progenitors. Although insults to the blood-forming system highlight the need for more rapid blood replenishment from stem cells, established models of hematopoiesis implicate only one mandatory differentiation pathway for each blood cell lineage. Here, we establish a nonhierarchical relationship between distinct stem cells that replenish all blood cell lineages and stem cells that replenish almost exclusively platelets, a lineage essential for hemostasis and with important roles in both the innate and adaptive immune systems. These distinct stem cells use cellularly, molecularly and functionally separate pathways for the replenishment of molecularly distinct megakaryocyte-restricted progenitors: a slower steady-state multipotent pathway and a fast-track emergency-activated platelet-restricted pathway. These findings provide a framework for enhancing platelet replenishment in settings in which slow recovery of platelets remains a major clinical challenge

    Ezh2 is essential for the generation of functional yolk sac derived erythro-myeloid progenitors

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-05-19, accepted 2021-10-27, registration 2021-11-08, collection 2021-12, pub-electronic 2021-12-02, online 2021-12-02Publication status: PublishedFunder: Kay Kendall Leukaemia Fund (KKLF); doi: https://doi.org/10.13039/501100000402; Grant(s): KKL811Funder: RCUK | Medical Research Council (MRC); doi: https://doi.org/10.13039/501100000265; Grant(s): MR/L006340/1, MC_UU_12009/5Funder: Cancer Research UK (CRUK); doi: https://doi.org/10.13039/501100000289; Grant(s): C42639/A26988, C5759/A27412Funder: Bloodwise; doi: https://doi.org/10.13039/501100007903; Grant(s): 19014Abstract: Yolk sac (YS) hematopoiesis is critical for the survival of the embryo and a major source of tissue-resident macrophages that persist into adulthood. Yet, the transcriptional and epigenetic regulation of YS hematopoiesis remains poorly characterized. Here we report that the epigenetic regulator Ezh2 is essential for YS hematopoiesis but dispensable for subsequent aorta–gonad–mesonephros (AGM) blood development. Loss of EZH2 activity in hemogenic endothelium (HE) leads to the generation of phenotypically intact but functionally deficient erythro-myeloid progenitors (EMPs), while the generation of primitive erythroid cells is not affected. EZH2 activity is critical for the generation of functional EMPs at the onset of the endothelial-to-hematopoietic transition but subsequently dispensable. We identify a lack of Wnt signaling downregulation as the primary reason for the production of non-functional EMPs. Together, our findings demonstrate a critical and stage-specific role of Ezh2 in modulating Wnt signaling during the generation of EMPs from YS HE

    JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles

    Get PDF
    JASPAR (http://jaspar.genereg.net) is the leading open-access database of matrix profiles describing the DNA-binding patterns of transcription factors (TFs) and other proteins interacting with DNA in a sequence-specific manner. Its fourth major release is the largest expansion of the core database to date: the database now holds 457 non-redundant, curated profiles. The new entries include the first batch of profiles derived from ChIP-seq and ChIP-chip whole-genome binding experiments, and 177 yeast TF binding profiles. The introduction of a yeast division brings the convenience of JASPAR to an active research community. As binding models are refined by newer data, the JASPAR database now uses versioning of matrices: in this release, 12% of the older models were updated to improved versions. Classification of TF families has been improved by adopting a new DNA-binding domain nomenclature. A curated catalog of mammalian TFs is provided, extending the use of the JASPAR profiles to additional TFs belonging to the same structural family. The changes in the database set the system ready for more rapid acquisition of new high-throughput data sources. Additionally, three new special collections provide matrix profile data produced by recent alternative high-throughput approaches

    Single-cell multi-omics identifies chronic inflammation as a driver of TP53-mutant leukemic evolution

    Get PDF
    Understanding the genetic and nongenetic determinants of tumor protein 53 (TP53)-mutation-driven clonal evolution and subsequent transformation is a crucial step toward the design of rational therapeutic strategies. Here we carry out allelic resolution single-cell multi-omic analysis of hematopoietic stem/progenitor cells (HSPCs) from patients with a myeloproliferative neoplasm who transform to TP53-mutant secondary acute myeloid leukemia (sAML). All patients showed dominant TP53 ‘multihit’ HSPC clones at transformation, with a leukemia stem cell transcriptional signature strongly predictive of adverse outcomes in independent cohorts, across both TP53-mutant and wild-type (WT) AML. Through analysis of serial samples, antecedent TP53-heterozygous clones and in vivo perturbations, we demonstrate a hitherto unrecognized effect of chronic inflammation, which suppressed TP53 WT HSPCs while enhancing the fitness advantage of TP53-mutant cells and promoted genetic evolution. Our findings will facilitate the development of risk-stratification, early detection and treatment strategies for TP53-mutant leukemia, and are of broad relevance to other cancer types
    corecore