60 research outputs found

    Equivalent acceleration assessment of JEDEC moisture sensitivity levels using peridynamics

    Get PDF
    The moisture inside the IC packages induces the several deformation failures, such as popcorn crack and swelling during the solder reflowing process. In semiconductor industry, over the past few years, the equivalent acceleration time for JEDEC moisture sensitivity level has been updated based on the weight gain measurements when the package structure and materials were modified. It costs long test times which may induce the significant delay of new product development and reliability evaluation. Additionally, the weight gain equivalency may not be sufficient to determine the equivalent accelerated time. In this paper, the new approach for evaluating the equivalent acceleration test time for preconditioning is proposed using the numerical calculation by peridynamics (PD) theory. The essential of proposed method is analyzing a moisture concentration and a vapor pressure which can cause the moisture induced failure in IC packages without facing the discontinuity problems of moisture concentration along the interfaces

    Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity

    Get PDF
    The red-crowned crane (Grus japonensis) is an endangered, large-bodied crane native to East Asia. It is a traditional symbol of longevity and its long lifespan has been confirmed both in captivity and in the wild. Lifespan in birds is known to be positively correlated with body size and negatively correlated with metabolic rate, though the genetic mechanisms for the red-crowned crane's long lifespan have not previously been investigated. Using whole genome sequencing and comparative evolutionary analyses against the grey-crowned crane and other avian genomes, including the long-lived common ostrich, we identified red-crowned crane candidate genes with known associations with longevity. Among these are positively selected genes in metabolism and immunity pathways (NDUFA5, NDUFA8, NUDT12, SOD3, CTH, RPA1, PHAX, HNMT, HS2ST1, PPCDC, PSTK CD8B, GP9, IL-9R, and PTPRC). Our analyses provide genetic evidence for low metabolic rate and longevity, accompanied by possible convergent adaptation signatures among distantly related large and long-lived birds. Finally, we identified low genetic diversity in the red-crowned crane, consistent with its listing as an endangered species, and this genome should provide a useful genetic resource for future conservation studies of this rare and iconic species

    What should medical students know about artificial intelligence in medicine?

    Get PDF
    Artificial intelligence (AI) is expected to affect various fields of medicine substantially and has the potential to improve many aspects of healthcare. However, AI has been creating much hype, too. In applying AI technology to patients, medical professionals should be able to resolve any anxiety, confusion, and questions that patients and the public may have. Also, they are responsible for ensuring that AI becomes a technology beneficial for patient care. These make the acquisition of sound knowledge and experience about AI a task of high importance for medical students. Preparing for AI does not merely mean learning information technology such as computer programming. One should acquire sufficient knowledge of basic and clinical medicines, data science, biostatistics, and evidence-based medicine. As a medical student, one should not passively accept stories related to AI in medicine in the media and on the Internet. Medical students should try to develop abilities to distinguish correct information from hype and spin and even capabilities to create thoroughly validated, trustworthy information for patients and the public

    Myotis rufoniger genome sequence and analyses: M-rufoniger's genomic feature and the decreasing effective population size of Myotis bats

    Get PDF
    Myotis rufoniger is a vesper bat in the genus Myotis. Here we report the whole genome sequence and analyses of the M. rufoniger. We generated 124 Gb of short-read DNA sequences with an estimated genome size of 1.88 Gb at a sequencing depth of 66x fold. The sequences were aligned to M. brandtii bat reference genome at a mapping rate of 96.50% covering 95.71% coding sequence region at 10x coverage. The divergence time of Myotis bat family is estimated to be 11.5 million years, and the divergence time between M. rufoniger and its closest species M. davidii is estimated to be 10.4 million years. We found 1,239 function-altering M. rufoniger specific amino acid sequences from 929 genes compared to other Myotis bat and mammalian genomes. The functional enrichment test of the 929 genes detected amino acid changes in melanin associated DCT, SLC45A2, TYRP1, and OCA2 genes possibly responsible for the M. rufoniger's red fur color and a general coloration in Myotis. N6AMT1 gene, associated with arsenic resistance, showed a high degree of function alteration in M. rufoniger. We further confirmed that the M. rufoniger also has batspecific sequences within FSHB, GHR, IGF1R, TP53, MDM2, SLC45A2, RGS7BP, RHO, OPN1SW, and CNGB3 genes that have already been published to be related to bat's reproduction, lifespan, flight, low vision, and echolocation. Additionally, our demographic history analysis found that the effective population size of Myotis clade has been consistently decreasing since similar to 30k years ago. M. rufoniger's effective population size was the lowest in Myotis bats, confirming its relatively low genetic diversity

    Stretchable and transparent electrodes based on in-plane structures

    Get PDF
    Stretchable electronics has attracted great interest with compelling potential applications that require reliable operation under mechanical deformation. Achieving stretchability in devices, however, requires a deeper understanding of nanoscale materials and mechanics beyond the success of flexible electronics. In this regard, tremendous research efforts have been dedicated toward developing stretchable electrodes, which are one of the most important building blocks for stretchable electronics. Stretchable transparent thin-film electrodes, which retain their electrical conductivity and optical transparency under mechanical deformation, are particularly important for the favourable application of stretchable devices. This minireview summarizes recent advances in stretchable transparent thin-film electrodes, especially employing strategies based on in-plane structures. Various approaches using metal nanomaterials, carbon nanomaterials, and their hybrids are described in terms of preparation processes and their optoelectronic/mechanical properties. Some challenges and perspectives for further advances in stretchable transparent electrodes are also discussed. © 2015 The Royal Society of Chemistry.open0

    Prediction of major depressive disorder following beta-blocker therapy in patients with cardiovascular diseases

    Get PDF
    Incident depression has been reported to be associated with poor prognosis in patients with cardiovascular disease (CVD), which might be associated with beta-blocker therapy. Because early detection and intervention can alleviate the severity of depression, we aimed to develop a machine learning (ML) model predicting the onset of major depressive disorder (MDD). A model based on L1 regularized logistic regression was trained against the South Korean nationwide administrative claims database to identify risk factors for the incident MDD after beta-blocker therapy in patients with CVD. We identified 50,397 patients initiating beta-blockers for CVD, with 774 patients developing MDD within 365 days after initiating beta-blocker therapy. An area under the receiver operating characteristic curve (AUC) of 0.74 was achieved. A history of non-selective beta-blockers and factors related to anxiety disorder, sleeping problems, and other chronic diseases were the most strong predictors. AUCs of 0.62–0.71 were achieved in the external validation conducted on six independent electronic health records and claims databases in the USA and South Korea. In conclusion, an ML model that identifies patients at high-risk for incident MDD was developed. Application of ML to identify susceptible patients for adverse events of treatment may serve as an important approach for personalized medicine
    corecore