291 research outputs found
Scope of chanos farming
Among the cultivable waters in
India, a total of 1.7 million ha is
brackish in nature . Brackish water is
more fertile and productive than sea
water. It is dynamic, influenced by the
tid es, currents and waves, Estuaries
were mainly useful for fish capture .
Since estuaries are found to be the
feeding and breeding places for many
of the fishes, their importance is more
felt now in view of the fisheries
development
Review on cage and pen culture
The paper deals with the various aspects of work done on cage and pen culture in India and abroad The need for these types of culture techniques in India is pointed out, The history of these systems is traced and the various species of fishes used in cage and pen culture are pointed out. Since clams, windowpane oyster, edible oyster, prawns and milk fish are compatible species, they are ideal for culturing together. The different factors governing the success of intensive culture are presented, The kinds of cages and pens installed are discussed with a note on their
durability with reference to the materials used for construction The yield achieved in cage and pen culture and the advantages of these two systems are reported. The field problems in these culture methods are indicated. The economics of fish production, particularly the net profit in selected studies are pointed out for taking up these programmes in mass level
Scope for Mussel Farming in Brackish Waters
The present study was carried out by the Central Marine Fisheries Research Institute in two coastal districts of Maharashtra with the main objectives ' i) to estimate the returns to capital and labour and ii) to compare employment pattern on mechanised boats and country crafts fitted with OBE. The present report mainly deals with the first objective of the stud
Studies on the growth of spiny lobster, Panulirus homarus in marine cages
A raft and four nylon cages were constructed to study the growth of fishes, prawns and lobsters. One of these cages of 2.5 x 1.6 x 4.0 m size was specially designed for lobster culture in the new harbour area at Tuticorin
The acanthamoeba shikimate pathway has a unique molecular arrangement and is essential for aromatic amino acid biosynthesis
The shikimate pathway is the only known biosynthetic route for de novo synthesis of aromatic compounds. It is described as an ancient eukaryotic innovation that has been retained in a subset of eukaryotes, replaced in plants through the acquisition of the chloroplast, but lost in many including humans. Herein, we demonstrate that Acanthamoeba castellanii possesses the shikimate pathway by biochemical and a combination of bioinformatics and molecular biological methods. The growth of A. castellanii (Neff strain and a recently isolated clinical specimen, both T4 genotypes) is inhibited by glyphosate [N-(phosphonomethyl) glycine], an inhibitor of EPSP synthase and the addition of phenylalanine and tryptophan, which are dependent on the shikimate pathway, rescued A. castellanii from glyphosate indicating that glyphosate was specific in action. A. castellanii has a novel complement of shikimate pathway enzymes including unique gene fusions, two Type I and one Type II DAHP synthases (for which their likely sensitivities to feedback inhibition by phenylalanine, tyrosine and tryptophan has been modelled) and a canonical chorismate synthase. The shikimate pathway in A. castellanii therefore has a novel molecular arrangement, is required for amino acid biosynthesis and represents an attractive target for antimicrobials
A new approach to wood protection: Preliminary study of biologically synthesized copper oxide nanoparticle formulation as an environmental friendly wood protectant against decay fungi and termites
Nanoparticles have addressed many challenges in science and technology and wood science research is one such field that has benefitted from application of metal nanoparticles. The metal nanoparticles that are commercially available for wood protection are synthesised by physical and chemical methods which produces toxic by-products and are expensive. The current study deals with a new approach for utilization of metal nanoparticle for wood protection in an ecofriendly and cost effective way. Metal nanoparticles were synthesised using plant extracts that are known to have wood preservative properties. The synergistic effects of the intrinsic property of plant extracts along with the biocidal property of metal nanoparticles were utilized. Copper oxide nanoparticles were synthesised using leaf extracts of Neem (Azadirachta indica), Pongamia (Pongamia pinnata), Lantana (Lantana camara) and extract of orange peel (Citrus reticulata). The effectiveness of the synthesised plant extract and copper oxide nanoparticle formulation is tested against wood decay fungi using agar mixed with the test substance. Graveyard test is employed to assess the effect of the copper oxide nanoparticle formulation against termites. Preliminary results are promising and studies are progressing to develop a stable and environmentally benign wood preservative formulation of metal nanoparticles and plant extracts
Role of the transcription factor Fli-1 on the CXCL10/CXCR3 Axis*
The transcription factor Fli-1, a member of the ETS family of transcription factors, is implicated in the pathogenesis of lupus disease. Reduced Fli-1 expression in lupus mice leads to decreased renal Cxcl10 mRNA levels and renal infiltrating CXCR3+ T cells that parallels reduced renal inflammatory cell infiltration and renal damage. Inflammatory chemokine CXCL10 is critical for attracting inflammatory cells expressing the chemokine receptor CXCR3. The CXCL10/CXCR3 axis plays a role in the pathogenesis of various inflammatory diseases including lupus. Our data here demonstrate that renal CXCL10 protein levels are significantly lower in Fli-1 heterozygous MRL/lpr mice compared to wild-type MRL/lpr mice. Knockdown of Fli-1 significantly reduced CXCL10 secretion in mouse and human endothelial cells, and human mesangial cells, upon LPS or TNFα stimulation. The Fli-1 inhibitor, Camptothecin, significantly reduced CXCL10 production in human monocyte cells upon interferon stimulation. Four putative Ets binding sites in the Cxcl10 promoter showed significant enrichment for FLI-1; however, FLI-1 did not directly drive transcription from the human or mouse promoters, suggesting FLI-1 may regulate CXCL10 expression indirectly. Our results also suggest that the DNA binding domain of FLI-1 is necessary for regulation of human hCXCR3 promotor activity in human T cells and interactions with co-activators. Together, these results support a role for FLI-1 in modulating the CXCL10-CXCR3 axis by directly or indirectly regulating the expression of both genes to impact lupus disease development. Signaling pathways or drugs that reduce FLI-1 expression may offer novel approaches to lupus treatment
A tale of two functions: enzymatic activity and translational repression by carboxyltransferase
Acetyl-CoA Carboxylase catalyzes the first committed step in fatty acid synthesis. Escherichia coli acetyl-CoA carboxylase is composed of biotin carboxylase, carboxyltransferase and biotin carboxyl carrier protein functions. The accA and accD genes that code for the α- and β-subunits, respectively, are not in an operon, yet yield an α2β2 carboxyltransferase. Here, we report that carboxyltransferase regulates its own translation by binding the mRNA encoding its subunits. This interaction is mediated by a zinc finger on the β-subunit; mutation of the four cysteines to alanine diminished nucleic acid binding and catalytic activity. Carboxyltransferase binds the coding regions of both subunit mRNAs and inhibits translation, an inhibition that is relieved by the substrate acetyl-CoA. mRNA binding reciprocally inhibits catalytic activity. Preferential binding of carboxyltransferase to RNA in situ was shown using fluorescence resonance energy transfer. We propose an unusual regulatory mechanism by which carboxyltransferase acts as a ‘dimmer switch’ to regulate protein production and catalytic activity, while sensing the metabolic state of the cell through acetyl-CoA concentration
Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets
BACKGROUND: Targeting persistent tubercule bacilli has become an important challenge in the development of anti-tuberculous drugs. As the glyoxylate bypass is essential for persistent bacilli, interference with it holds the potential for designing new antibacterial drugs. We have developed kinetic models of the tricarboxylic acid cycle and glyoxylate bypass in Escherichia coli and Mycobacterium tuberculosis, and studied the effects of inhibition of various enzymes in the M. tuberculosis model. RESULTS: We used E. coli to validate the pathway-modeling protocol and showed that changes in metabolic flux can be estimated from gene expression data. The M. tuberculosis model reproduced the observation that deletion of one of the two isocitrate lyase genes has little effect on bacterial growth in macrophages, but deletion of both genes leads to the elimination of the bacilli from the lungs. It also substantiated the inhibition of isocitrate lyases by 3-nitropropionate. On the basis of our simulation studies, we propose that: (i) fractional inactivation of both isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 is required for a flux through the glyoxylate bypass in persistent mycobacteria; and (ii) increasing the amount of active isocitrate dehydrogenases can stop the flux through the glyoxylate bypass, so the kinase that inactivates isocitrate dehydrogenase 1 and/or the proposed inactivator of isocitrate dehydrogenase 2 is a potential target for drugs against persistent mycobacteria. In addition, competitive inhibition of isocitrate lyases along with a reduction in the inactivation of isocitrate dehydrogenases appears to be a feasible strategy for targeting persistent mycobacteria. CONCLUSION: We used kinetic modeling of biochemical pathways to assess various potential anti-tuberculous drug targets that interfere with the glyoxylate bypass flux, and indicated the type of inhibition needed to eliminate the pathogen. The advantage of such an approach to the assessment of drug targets is that it facilitates the study of systemic effect(s) of the modulation of the target enzyme(s) in the cellular environment
- …