20 research outputs found

    Transcriptomics of early responses to purified Piscine orthoreovirus-1 in Atlantic salmon (Salmo salar L.) red blood cells compared to non-susceptible cell lines

    Get PDF
    Piscine red blood cells (RBC) are nucleated and have been characterized as mediators of immune responses in addition to their role in gas exchange. Salmonid RBC are major target cells of Piscine orthoreovirus-1 (PRV-1), the etiological agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). PRV-1 replicates in RBC ex vivo, but no viral amplification has been possible in available A. salmon cell lines. To compare RBC basal transcripts and transcriptional responses to PRV-1 in the early phase of infection with non-susceptible cells, we exposed A. salmon RBC, Atlantic salmon kidney cells (ASK) and Salmon head kidney cells (SHK-1) to PRV-1 for 24 h. The RNA-seq analysis of RBC supported their previous characterization as pluripotent cells, as they expressed a wide repertoire of genes encoding pattern recognition receptors (PRRs), cytokine receptors, and genes implicated in antiviral activities. The comparison of RBC to ASK and SHK-1 revealed immune cell features exclusively expressed in RBC, such as genes involved in chemotactic activity in response to inflammation. Differential expression analysis of RBC exposed to PRV-1 showed 46 significantly induced genes (≥ 2-fold upregulation) linked to the antiviral response pathway, including RNA-specific PRRs and interferon (IFN) response factors. In SHK-1, PRV induced a more potent or faster antiviral response (213 genes induced). ASK cells showed a differential response pattern (12 genes induced, 18 suppressed) less characterized by the dsRNA-induced antiviral pathway. Despite these differences, the RIG-I-like receptor 3 (RLR3) in the family of cytosolic dsRNA receptors was significantly induced in all PRV-1 exposed cells. IFN regulatory factor 1 (IRF1) was significantly induced in RBC only, in contrast to IRF3/IRF7 induced in SHK-1. Differences in IRF expression and activity may potentially affect viral propagation

    Thermal plasticity of the miRNA transcriptome during Senegalese sole development

    Get PDF
    Several miRNAs are known to control myogenesis in vertebrates. Some of them are specifically expressed in muscle while others have a broader tissue expression but are still involved in establishing the muscle phenotype. In teleosts, water temperature markedly affects embryonic development and larval growth. It has been previously shown that higher embryonic temperatures promoted faster development and increased size of Senegalese sole (Solea senegalensis) larvae relatively to a lower temperature. The role of miRNAs in thermal-plasticity of growth is hitherto unknown. Hence, we have used high-throughput SOLiD sequencing to determine potential changes in the miRNA transcriptome in Senegalese sole embryos that were incubated at 15°C or 21°C until hatching and then reared at a common temperature of 21°C. Results: We have identified 320 conserved miRNAs in Senegalese sole, of which 48 had not been previously described in teleosts. mir-17a-5p, mir-26a, mir-130c, mir-206-3p, mir-181a-5p, mir-181a-3p and mir-199a-5p expression levels were further validated by RT- qPCR. The majority of miRNAs were dynamically expressed during early development, with peaks of expression at pre-metamorphosis or metamorphosis. Also, a higher incubation temperature (21°C) was associated with expression of some miRNAs positively related with growth (e.g., miR-17a, miR-181-5p and miR-206) during segmentation and at hatching. Target prediction revealed that these miRNAs may regulate myogenesis through MAPK and mTOR pathways. Expression of miRNAs involved in lipid metabolism and energy production (e.g., miR-122) also differed between temperatures. A miRNA that can potentially target calpain (miR-181-3p), and therefore negatively regulate myogenesis, was preferentially expressed during segmentation at 15°C compared to 21°C. Conclusions: Temperature has a strong influence on expression of miRNAs during embryonic and larval development in fish. Higher expression levels of miR-17a, miR-181-5p and miR-206-3p and down-regulation of miR-181a-3p at 21°C may promote myogenesis and are in agreement with previous studies in Senegalese sole, which reported enhanced growth at higher embryonic temperatures compared to 15°C. Moreover, miRNAs involved in lipid metabolism and energy production may also contribute to increased larval growth at 21°C compared to 15°C. Taken together, our data indicate that miRNAs may play a role in temperature-induced phenotypic plasticity of growth in teleosts.Peer Reviewe

    Monocytes accumulate in the airways of children with fatal asthma

    Get PDF
    Background: Activated T helper type 2 (Th2) cells are believed to play a pivotal role in allergic airway inflammation, but which cells attract and activate Th2 cells locally have not been fully determined. Recently, it was shown in an experimental human model of allergic rhinitis (AR) that activated monocytes rapidly accumulate in the nasal mucosa after local allergen challenge, where they promote recruitment of Th2 cells and eosinophils. Objective: To investigate whether monocytes are recruited to the lungs in paediatric asthma. Methods: Tissue samples obtained from children and adolescents with fatal asthma attack (n = 12), age-matched non-atopic controls (n = 9) and allergen-challenged AR patients (n = 8) were subjected to in situ immunostaining. Results: Monocytes, identified as CD68+S100A8/A9+ cells, were significantly increased in the lower airway mucosa and in the alveoli of fatal asthma patients compared with control individuals. Interestingly, cellular aggregates containing CD68+S100A8/A9+ monocytes obstructing the lumen of bronchioles were found in asthmatics (8 out of 12) but not in controls. Analysing tissue specimens from challenged AR patients, we confirmed that co-staining with CD68 and S100A8/A9 was a valid method to identify recently recruited monocytes. We also showed that the vast majority of accumulating monocytes both in the lungs and in the nasal mucosa expressed matrix metalloproteinase 10, suggesting that this protein may be involved in their migration within the tissue. Conclusions and clinical relevance: Monocytes accumulated in the lungs of children and adolescents with fatal asthma attack. This finding strongly suggests that monocytes are directly involved in the immunopathology of asthma and that these pro-inflammatory cells are potential targets for therapy.Peer reviewe

    Optimization of enzymatic fragmentation is crucial to maximize genome coverage: a comparison of library preparation methods for Illumina sequencing

    No full text
    Background Novel commercial kits for whole genome library preparation for next-generation sequencing on Illumina platforms promise shorter workflows, lower inputs and cost savings. Time savings are achieved by employing enzymatic DNA fragmentation and by combining end-repair and tailing reactions. Fewer cleanup steps also allow greater DNA input flexibility (1 ng-1 μg), PCR-free options from 100 ng DNA, and lower price as compared to the well-established sonication and tagmentation-based DNA library preparation kits. Results We compared the performance of four enzymatic fragmentation-based DNA library preparation kits (from New England Biolabs, Roche, Swift Biosciences and Quantabio) to a tagmentation-based kit (Illumina) using low input DNA amounts (10 ng) and PCR-free reactions with 100 ng DNA. With four technical replicates of each input amount and kit, we compared the kits’ fragmentation sequence-bias as well as performance parameters such as sequence coverage and the clinically relevant detection of single nucleotide and indel variants. While all kits produced high quality sequence data and demonstrated similar performance, several enzymatic fragmentation methods produced library insert sizes which deviated from those intended. Libraries with longer insert lengths performed better in terms of coverage, SNV and indel detection. Lower performance of shorter-insert libraries could be explained by loss of sequence coverage to overlapping paired-end reads, exacerbated by the preferential sequencing of shorter fragments on Illumina sequencers. We also observed that libraries prepared with minimal or no PCR performed best with regard to indel detection. Conclusions The enzymatic fragmentation-based DNA library preparation kits from NEB, Roche, Swift and Quantabio are good alternatives to the tagmentation based Nextera DNA flex kit from Illumina, offering reproducible results using flexible DNA inputs, quick workflows and lower prices. Libraries with insert DNA fragments longer than the cumulative sum of both read lengths avoid read overlap, thus produce more informative data that leads to strongly improved genome coverage and consequently also increased sensitivity and precision of SNP and indel detection. In order to best utilize such enzymatic fragmentation reagents, researchers should be prepared to invest time to optimize fragmentation conditions for their particular samples

    Postovulatory maternal transcriptome in Atlantic salmon and its relation to developmental potential of embryos

    Get PDF
    Background Early development of an oviparous organism is based on maternally stocked structural, nutritional and regulatory components. These components influence the future developmental potential of an embryo, which is referred to as egg quality. Until zygotic genome activation, translational activity in a fish early embryo is limited to parentally inherited transcripts only. In this study, we asked whether egg transcriptome is associated with egg quality in Atlantic salmon (Salmo salar), which is capable of storing ovulated eggs in its abdominal cavity for a long time before spawning. Results We analyzed messenger RNA (mRNA) and micro RNA (miRNA) transcriptomes throughout the post-ovulatory egg retention period in batches of eggs from two quality groups, good and poor, classified based on the future developmental performance. We identified 28,551 protein-coding genes and 125 microRNA families, with 200 mRNAs and 5 miRNAs showing differential abundance between egg quality groups and/or among postovulatory ages. Transcriptome dynamics during the egg retention period was different in the two egg quality groups. We identified only a single gene, hepcidin-1, as a potential marker for Atlantic salmon egg quality evaluation. Conclusion The overlapping effect of post-ovulatory age on intrinsic egg developmental competence makes the quantification of egg quality difficult when based on transcripts abundance only

    Transcriptome profiling of human thymic CD4+ and CD8+ T cells compared to primary peripheral T cells

    No full text
    Background The thymus is a highly specialized organ of the immune system where T cell precursors develop and differentiate into self-tolerant CD4+ or CD8+ T cells. No studies to date have investigated how the human transcriptome profiles differ, between T cells still residing in the thymus and T cells in the periphery. Results We have performed high-throughput RNA sequencing to characterize the transcriptomes of primary single positive (SP) CD4+ and CD8+ T cells from infant thymic tissue, as well as primary CD4+ and CD8+ T cells from infant and adult peripheral blood, to enable the comparisons across tissues and ages. In addition, we have assessed the expression of candidate genes related to autoimmune diseases in thymic CD4+ and CD8+ T cells. The thymic T cells showed the largest number of uniquely expressed genes, suggesting a more diverse transcription in thymic T cells. Comparing T cells of thymic and blood origin, revealed more differentially expressed genes, than between infant and adult blood. Functional enrichment analysis revealed an over-representation of genes involved in cell cycle and replication in thymic T cells, whereas infant blood T cells were dominated by immune related terms. Comparing adult and infant blood T cells, the former was enriched for inflammatory response, cytokine production and biological adhesion, while upregulated genes in infant blood T cells were associated with cell cycle, cell death and gene expression. Conclusion This study provides valuable insight into the transcriptomes of the human primary SP T cells still residing within the thymus, and offers a unique comparison to primary blood derived T cells. Interestingly, the majority of autoimmune disease associated genes were expressed in one or more T cell subset, however ~ 11% of these were not expressed in frequently studied adult peripheral blood

    A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform

    No full text
    Background Advances in sequencing technologies and bioinformatics have made the analysis of microbial communities almost routine. Nonetheless, the need remains to improve on the techniques used for gathering such data, including increasing throughput while lowering cost and benchmarking the techniques so that potential sources of bias can be better characterized. Methods We present a triple-index amplicon sequencing strategy to sequence large numbers of samples at significantly lower c ost and in a shorter timeframe compared to existing methods. The design employs a two-stage PCR protocol, incorpo rating three barcodes to each sample, with the possibility to add a fourth-index. It also includes heterogeneity spacers to overcome low complexity issues faced when sequencing amplicons on Illumina platforms. Results The library preparation method was extensively benchmarked through analysis of a mock community in order to assess biases introduced by sample indexing, number of PCR cycles, and template concentration. We further evaluated the method through re-sequencing of a standardized environmental sample. Finally, we evaluated our protocol on a set of fecal samples from a small cohort of healthy adults, demonstrating good performance in a realistic experimental setting. Between-sample variation was mainly related to batch effects, such as DNA extraction, while sample indexing was also a significant source of bias. PCR cycle number strongly influenced chimera formation and affected relative abundance estimates of species with high GC content. Libraries were sequenced using the Illumina HiSeq and MiSeq platforms to demonstrate that this protocol is highly scalable to sequence thousands of samples at a very low cost. Conclusions Here, we provide the most comprehensive study of performance and bias inherent to a 16S rRNA gene amplicon sequencing method to date. Triple-indexing greatly reduces the number of long custom DNA oligos required for library preparation, while the inclusion of variable length heterogeneity spacers minimizes the need for PhiX spike-in. This design results in a significant cost reduction of highly multiplexed amplicon sequencing. The biases we characterize highlight the need for highly standardized protocols. Reassuringly, we find that the biological signal is a far stronger structuring factor than the various sources of bias
    corecore