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Abstract

Background: Activated T helper type 2 (Th2) cells are believed to play a pivotal role

in allergic airway inflammation, but which cells attract and activate Th2 cells locally

have not been fully determined. Recently, it was shown in an experimental human

model of allergic rhinitis (AR) that activated monocytes rapidly accumulate in the

nasal mucosa after local allergen challenge, where they promote recruitment of Th2

cells and eosinophils.

Objective: To investigate whether monocytes are recruited to the lungs in paedi-

atric asthma.

Methods: Tissue samples obtained from children and adolescents with fatal asthma

attack (n = 12), age‐matched non‐atopic controls (n = 9) and allergen‐challenged AR

patients (n = 8) were subjected to in situ immunostaining.

Results: Monocytes, identified as CD68+S100A8/A9+ cells, were significantly

increased in the lower airway mucosa and in the alveoli of fatal asthma patients

compared with control individuals. Interestingly, cellular aggregates containing

CD68+S100A8/A9+ monocytes obstructing the lumen of bronchioles were found in

asthmatics (8 out of 12) but not in controls. Analysing tissue specimens from chal-

lenged AR patients, we confirmed that co‐staining with CD68 and S100A8/A9 was

a valid method to identify recently recruited monocytes. We also showed that the

vast majority of accumulating monocytes both in the lungs and in the nasal mucosa

expressed matrix metalloproteinase 10, suggesting that this protein may be involved

in their migration within the tissue.

Conclusions and clinical relevance: Monocytes accumulated in the lungs of children

and adolescents with fatal asthma attack. This finding strongly suggests that mono-

cytes are directly involved in the immunopathology of asthma and that these pro‐
inflammatory cells are potential targets for therapy.
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1 | INTRODUCTION

The prevalence of asthma in childhood is continuously increasing

and imposes a significant burden to society in terms of medication,

hospitalization days, school absenteeism and life‐years lost.1,2 The

inflammatory response of allergic asthma is characterized by aberrant

activation of allergen‐reactive T helper 2 (Th2) cells secreting IL‐4,
IL‐5 and IL‐13 and accumulation of activated eosinophils, both of

which contribute to increased reactivity of the airways. T‐cell
responses in the airways are controlled by a network of antigen‐pre-
senting cells (APCs), which consist of monocytes, macrophages and

dendritic cells (DCs).3 In animal models of allergic asthma, it has been

shown that conventional (c)DCs residing in the tissue capture inhaled

allergens and migrate to the draining lymph nodes where they acti-

vate rare allergen‐specific T cells. These T cells subsequently home

back to the site of allergen exposure to become reactivated by local

APCs, including resident DCs.4 Compatible with this notion, studies

of allergic asthma patients have shown that CD1c+ cDCs accumu-

late in the respiratory mucosa after bronchial allergen challenge with

a concomitant decrease in CD1c+cDCs in peripheral blood,5,6 sug-

gesting that increased recruitment of cDCs from the circulation

occurs during allergic inflammation. However, studies in mice also

showed that monocytes accumulating in the lungs played a pivotal

role in the allergic inflammatory reaction both by secreting cytokines

and chemokines7 and by reactivating allergen‐specific effector T

cells.8 In line with this, it was reported that in allergic children

requiring hospitalization due to asthma exacerbations, activated

monocytes increased in the circulation.9 However, whether mono-

cytes are recruited to the airways in allergic asthmatics has not been

investigated.

In an in vivo model of allergic rhinitis (AR), we recently found

that circulating monocytes were rapidly (within hours) recruited to

the nasal mucosa following local allergen challenge and remained the

major APC subset in the nasal mucosa during 1 week with daily

allergen exposure.10 Global transcriptome analysis of APCs (including

monocytes) isolated from the challenged mucosa showed increased

expression of genes for several Th2‐associated chemokines concomi-

tant with recruitment of T cells and eosinophils.10 This finding sug-

gested that accumulating inflammatory monocytes may play an

important role in AR, and led us to investigate whether recruitment

of monocytes is a prominent feature also in asthma.

2 | MATERIAL AND METHODS

2.1 | Asthmatic patients and non‐atopic controls

Post‐mortem tissue samples were obtained from a death certificate

study on fatal asthma in children and adolescents (n = 12) during

1976‐1998 in Finland.11,12 Median age at death was 3.1 years (range

0.9‐19.5). Of the individuals with reliable information, 4 of 6 cases

had parents that were asthma sufferers. Nine of 12 asthmatic chil-

dren displayed atopy. The median delay of anti‐inflammatory

medication from the beginning of asthma symptoms was 0.8 years,

and only 5 of 12 patients were taking inhaled corticosteroids at the

time of the fatal asthma attack (Table 1). The airways of the asth-

matics showed typical signs of chronic Th2 inflammation,13 including

a marked thickening of the basement membrane of the epithelium

and plugs of mucus in the lumen of bronchi and bronchioles.12 Lung

biopsies from 15 age‐matched non‐atopic individuals (median age

5.5 years, range 0.1‐16.4) with accidental death between 2006 and

2010 were received from medico‐legal autopsies and served as con-

trols. The necropsy specimens were obtained <48 hours’ post‐mor-

tem and were subsequently fixed in formalin and embedded in

paraffin (FFPE) for in situ immunostaining. Approval for this study

was obtained from the Finnish Ministry of Social Affairs and Health,

National Supervisory Authority for Welfare and Health and Ethics

Committee for Hospital for Children and Adolescents (220/13/03/03/

2009).

2.2 | Allergic rhinitis patients

Birch pollen AR patients (n = 8, 20‐25 year old, 5 women) were

included. All patients fulfilled the Allergic Rhinitis and its Impact on

Asthma (ARIA) criteria for persistent, moderate/severe AR14 and had

been symptomatic for at least the last three pollen seasons. All

patients had a positive skin prick test to birch pollen. Five subjects

were also sensitized to grass, mugwort, ragweed, mites and/or cat,

dog or horse dander. Any other type of nasal disorder was excluded

by examining the patients’ medical histories and by clinical examina-

tion including nasal endoscopy. All patients were challenged accord-

ing to the protocol shown in Figure S1, and the provocation was

performed out of the pollen season. No patient experienced nasal

allergic symptoms in the 3 months before the provocation or

received any medication during the challenge period, and all of them

were otherwise healthy. None of the participants were smokers. The

study was approved by the Regional Committee for Medical and

Health Research Ethics in Norway (2010/1753), and all patients gave

their informed written consent.

2.3 | Nasal allergen challenge

The nasal challenge procedure has been described in detail else-

where,15 and the challenge protocol is shown in Figure S1. A solu-

tion of pollen extract (30 HEP/mL, Test de Provocación Betula alba,

Laboratorios Leti, Spain) was delivered once a day for two consecu-

tive days into one nostril with a hand‐driven pump spray giving a

defined volume of 50 μL. This model of in vivo experimentally

induced human AR induces typical AR symptoms, and the recruit-

ment of eosinophils, as demonstrated in previous studies from our

group.10,15

2.4 | Nasal symptoms

The patients were instructed to score each single nasal symptom

(sneezing, rhinorrhoea and nasal blockage) by using a 10 cm visual
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analogue scale ranging from “not bothered at all” to “extremely

bothered.” Prior to the nasal challenge (day 0), a mucosal biopsy

was obtained under topical anaesthesia (tetracaine/adrenaline) from

the lower turbinate of one nostril. The allergen challenge was

thereafter performed on the other nasal cavity. The second biopsy

was obtained under topical anaesthesia 24 hours after the last

allergen dose from the lower turbinate of the challenged nostril.

No biopsy‐related complications occurred.

2.5 | Tissue preparation for immunohistology

Multi‐colour immunofluorescence was performed as described else-

where.16 The monoclonal antibodies (mAbs) used are listed in Tables

S1 and S2. Concentration‐matched irrelevant isotype antibodies

were used as negative controls. For immunohistochemical localiza-

tion of S100A8/A9, a DAKO EnVision peroxidase/DAB kit (Agilent

Kista, Sweden) was applied.

2.6 | Immunofluorescence microscopy

The slides were examined by IEG at x60 magnification with a

confocal microscope. To determine cell densities in the lamina

propia of nasal, bronchial and bronchiolar mucosa and in the alve-

olar compartment, a minimum of 6 representative fields

(0.045 mm2 each) with preserved tissue architecture were

acquired. These fields did not include portions of respiratory

epithelium. To calculate cell densities, all the cells within the

acquired fields displaying a specific phenotype were enumerated.

The positivity threshold for every marker was determined by the

signal emitted by the corresponding isotype control antibody (Fig-

ure S2). For illustration purposes, images were captured using the

same confocal microscope (Olympus FV1000; Olympus, Hamburg,

Germany).

2.7 | Flow cytometric analysis of blood monocytes

Peripheral blood mononuclear cells (PBMCs) were obtained by den-

sity centrifugation (Lymphoprep, StemCell Technologies) from three

healthy blood donors. PBMCs were then stained for surface and

intracellular markers (antibodies listed in Table S3) using BD Cytofix/

Cytoperm kit and subsequently analysed by flow cytometry (LSR For-

tessa, BD Biosciences, Franklin Lakes NJ). Irrelevant isotype‐ and

concentration‐matched antibodies were used as controls.

2.8 | Statistics

GraphPad Prism version 5.0 (GraphPad Software, La Jolla, CA) was

used for statistical analysis. The distribution of the samples was

assessed using the Kolmogorov‐Smirnov test. Comparisons between

normally distributed samples were made by Student's t test for

either paired or unpaired samples. For samples not normally dis-

tributed, either the Kruskal‐Wallis or Wilcoxon test was used. A P‐
value of <0.05 was considered significant.

3 | RESULTS

3.1 | S100A8/A9 identifies newly recruited
monocytes in allergic airway inflammation

Monocytes are phenotypically very similar to tissue‐resident macro-

phages, and there are currently no established protocols to distin-

guish monocytes from macrophages in FFPE sections of the

TABLE 1 Clinical features of fatal
asthma children included in the study

Sex

Age at onset
of symptoms
(y)

Age at
diagnosis
(y)

Age of
death
(y)

Treatment
delay (y) ICS

Other
asthma
therapy

*Tissue
eosinophilia
(cells/mm2)

F 2.2 ‐ 6 3.8 No No 20

F 1.1 ‐ 1.9 0.8 No No 27

M 0.5 3 18.9 6.5 No T, C 65

M ‐ ‐ 0.9 ‐ ‐ ‐ 1240

M 1.1 1.5 1.9 0.4 No No 77

F 0.7 0.8 2.6 0.1 Yes T, C 240

M 1 1.3 18.1 12 No T 653

M 1 3 19.5 3.0 Yes T, C 360

M 0.7 0.9 2.4 0.2 Yes T 320

F 1.5 1.7 1.8 0.2 No T 700

M 15 17.8 18.7 2.8 Yes LABA 1

M 0.8 0.9 3.6 0.1 Yes C 467

*Data from reference 12. (F: female; M:male; ICS: inhaled corticosteroids; T: teophyllin; C: cromogly-

cate; LABA: long‐acting beta‐agonists)
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respiratory mucosa. When studying the turnover of alveolar macro-

phages in transplanted lungs using FFPE specimens, we recently

found that incoming recipient monocytes selectively expressed the

antimicrobial protein S100A8/A9, whereas resident alveolar macro-

phages from the donor were uniformly S100A8/A9‐negative.17 Fur-

thermore, we recently reported that blood monocytes constitutively

migrate into the intestinal mucosa where they develop into mature

macrophages, with a progressive loss of S100A8/A9 expression as

part of the differentiation process.18 To test the applicability of this

marker in an airway allergy setting, we examined FFPE specimens of

the nasal mucosa obtained from an experimental in vivo model of

AR (Figure S1) in which all allergen‐challenged patients experienced

typical allergic symptoms and increase in the density of mucosal

eosinophils (Figure S3). We have recently shown that monocytes

rapidly accumulate in experimentally induced AR using cryo‐pre-
served tissue material,10 but in the latter study, we had no positive

marker to identify monocytes and used DC‐SIGN/CD209 to distin-

guish monocytes (negative) from macrophages (positive). Co‐staining
for S100A8/A9 and the pan monocyte/macrophage marker CD68,

together with assessments of nuclear morphology to exclude granu-

locytes, on FFPE sections revealed few double‐positive cells at base-

line (Figure 1A‐C), but following two days of allergen provocation,

there was a striking 11‐fold increase in CD68+S100A8/A9+ mono-

cytes, whereas the number of CD68+S100A8/A9‐ macrophages was

unchanged (Figure 1A‐C). Of note, there was a correlation between

the accumulating monocytes and eosinophils in the nasal mucosa of

AR patients (r = 0.5; P = 0.001), suggesting that monocyte recruit-

ment associates with markers of airway allergic inflammation. This

observation was consistent with our previous study,10 and further

substantiated the finding that monocytes are recruited in large num-

bers to the challenged nasal mucosa of AR patients, whereas the

density of macrophages remains unchanged. The observation fur-

thermore demonstrates the applicability of using S100A8/A9 as a

marker to identify newly recruited monocytes in FFPE tissues.

3.2 | Monocytes accumulate in the lower airways
of children and adolescents with fatal asthma attacks

To examine whether monocytes are recruited to the inflamed lungs

of asthmatics, FFPE lung biopsies from children and adolescent with

fatal asthma and lung specimens from age‐matched control individu-

als were analysed. Co‐staining for CD68 and S100A8/A9 revealed a

5‐fold higher density (P = 0.0002) of monocytes in the lamina pro-

pria of the bronchi and bronchioles in asthmatic subjects compared

to controls (Figure 2A). The number of CD68+S100A8/A9‐ macro-

phages was also higher in asthmatics, yet the difference was less

pronounced (3‐fold increase, P = 0.0028) (Figure 2B). Importantly,

the number of accumulating monocytes and macrophages was not
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F IGURE 1 Co‐staining for CD68 and
S100A8/A9 discriminates recruited
monocytes from resident macrophages in
the airways of allergic patients. Density of
CD68+S100A8/A9+monocytes (A) and
CD68+S100A8/A9‐macrophages (B) in the
nasal mucosa of allergic rhinitis patients at
baseline and after 2 days of allergen
challenge. C, Two‐colour
immunofluorescence staining of CD68 and
S100A8/A9 at baseline and after
provocation. The yellow and white
arrowheads indicate macrophages and
monocytes, respectively (***P < 0.001).
Scale bars: 30 μm
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influenced by disease duration, age at death or the treatment with

inhaled corticosteroids (data not shown). A recent study examining

the same tissue samples demonstrated increased thickness of the

basement membrane, and higher numbers of eosinophils, T

lymphocytes and smooth muscle cells in asthmatics as compared

with controls12 (Table 1). There was no association between elicited

monocytes and T lymphocytes or smooth muscle cells in the bron-

chial mucosa of asthmatics (data not shown), but there was a

F IGURE 2 Both monocytes and
macrophages are increased in the bronchial
mucosa of children with fatal asthma
attacks. Density of CD68+S100A8/
A9+monocytes (A) and CD68+S100A8/9‐
macrophages (B) in the lamina propia of
bronchial mucosal tissue from asthmatic
children and non‐atopic controls. Two‐
colour immunofluorescence staining of
CD68 and S100A8/A9 on FFPE section
from control and asthmatic patient (C).
Yellow and white arrowheads indicate
macrophages and monocytes. S100A8/
A9+CD68‐cells represent granulocytes
(**P < 0.01***P < 0.001). Scale bars:
30 μm

F IGURE 3 Aggregates of monocytes obstruct the airways of children with fatal asthma attacks. Haematoxylin‐eosin staining of a FFPE
section from a child suffering from fatal asthma attack showing a bronchiole with abundant mononuclear cells in the airway lumen (A).Two‐
colour immunofluorescence staining of CD68 and S100A8/A9 in an adjacent section (B) to that shown in A. The white arrows mark
intraepithelial S100A8/A9+CD68+ mononuclear cells (monocytes). S100A8/A9+CD68‐cells represent granulocytes. Scale bars: 50 μm
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significant correlation between monocytes and eosinophils

(r = 0.684; P = 0.001) and between monocytes and the thickness of

the basement membrane (r = 0.639; P = 0.002).

Interestingly, in 8 of 12 asthma subjects, but not in the controls,

cellular aggregates containing CD68+S100A8/A9+ monocytes

obstructing the lumen of bronchioles were found (Figure 3). More-

over, single monocytes between the basement membrane and the

epithelial layer were observed (Figure 3B). Also in the parenchyma

of asthmatic individuals, the density of CD68+S100A8/A9+ mono-

cytes was higher (4‐fold, P = 0.0002) than in control subjects (Fig-

ure 4A), but the number of CD68+S100A8/A9‐ alveolar

macrophages was comparable between the two groups (Figure 4B).

Most parenchymal monocytes in the lung of asthmatics appeared to

reside within the interstitium (Figure S5), but monocytes were also

observed within the alveolar lumen (Figure 4B). As in the bronchi,

neither the disease duration, age at death nor the anti‐asthma ther-

apy affected the accumulation of monocytes in the parenchyma of

asthmatics (data not shown). Together, these observations imply that

recruited monocytes are able to migrate from the vessels in the lam-

ina propia to the airway lumen.

3.3 | Monocytes express MMP10 in allergic airway
inflammation

We recently performed global transcriptomic analysis of sorted

CD45+HLA‐DR+ APCs in a short‐term (48 hours) experimental model

of human AR, in which we found a strong upregulation of several genes

including matrix metalloproteinase 10 (MMP10) after provocation (Egui-

luz‐Gracia et al, unpublished). MMP10, also termed stromelysin‐2, is an
endopeptidase involved in the breakdown of extracellular matrices

(ECMs) by cleaving proteoglycans and fibronectin.19 MMP10 is also uti-

lized by mouse bone marrow‐derived macrophages to migrate through

ECMs.20 Interestingly, sorted peripheral blood monocytes from healthy

adults uniformly expressed MMP10 (Figure 5A), and we thus hypothe-

sized that accumulating monocytes may use this protein to migrate

within the inflamed tissue. To this end, we performed three‐colour
immunofluorescence in situ staining for CD68, S100A8/A9 and MMP10.

Of note, we found that many CD68+S100A8/A9+ monocytes both in

the lumen of small vessels and in the lamina propia expressed MMP10 in

allergen‐challenged AR patients (Figure 5B). As previously reported,

monocytes are quite scarce in nasal mucosal samples obtained before

provocation,10 and only occasional MMP10+ monocytes were seen at

baseline (Figure S4). We then examined the occurrence of MMP10+

monocytes in FFPE tissue from asthmatic patients. In the lamina propia

of bronchi and bronchioles, a median of 70% of CD68+S100A8/A9+

monocytes expressed MMP10, and the density of MMP10+ monocytes

was 7‐fold higher (P = 0.0002) than in control individuals (Figure 5C‐E).
Also in the lung parenchyma, 75% of CD68+S100A8/A9+ monocytes

expressed MMP10, and the density was 4‐fold higher (P = 0.0001) than

in controls (Figure 5F,H). Taken together, these findings suggest that

MMP10 expression might contribute to monocyte migration in the respi-

ratory tract.

F IGURE 4 Monocytes, but not alveolar
macrophages, are increased in the lung
parenchyma of children with fatal asthma
attacks. Density of CD68+S100A8/A9+
monocytes (A) and CD68+S100A8/A9‐
macrophages (B) in the parenchyma of
asthmatic children and non‐atopic controls.
Two‐colour immunofluorescence staining
of CD68 and S100A8/A9 on FFPE section
from control and asthmatic patient
samples. Yellow and white arrowheads
indicate macrophages and monocytes,
respectively. S100A8/A9+CD68‐ cells are
granulocytes (***P < 0.001). Scale bars:
50 μm
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F IGURE 5 The majority of monocytes in the respiratory tract of asthmatics express matrix metalloproteinase 10 (MMP10). PBMCs from a
healthy donor were gated for CD14 (left panel), followed by intracellular staining of MMP10 vs isotype antibody (right panel) (A). Three‐colour
immunofluorescence staining of CD68, S100A8/A9 and MMP10 on FFPE section of the nasal mucosa from an AR patient after 2 days of
allergen challenge (B). Density (C, E) and proportion (D, F) of MMP10+ monocytes in the bronchial lamina propia (C, D) and alveolar tissue (E,
F) of asthma patients and non‐atopic controls. Three‐colour immunofluorescence staining of CD68, S100A8/A9 and MMP10 on FFPE sections
in the bronchial lamina propia and pulmonary alveoli of representative asthmatic and control samples (G). The yellow, white and brown
arrowheads indicate alveolar macrophages, MMP10+ monocytes and MMP10‐ monocytes, respectively. S100A8/A9+CD68‐cells are
granulocytes (***P < 0001). Scale bars: 30 μm [Colour figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

In an experimental model of human AR, we have previously reported

that CD1c+ cDCs and plasmacytoid (p)DCs accumulated in the nasal

mucosa after long‐term allergen challenge. However, tissue DCs and

macrophages were both strongly outnumbered by a robust and rapid

influx of proinflammatory monocytes.10,15,21 Recruitment of CD1c+

cDCs and pDCs has also been found in the allergic inflammation of

asthmatics,5,6,22 but whether monocytes contribute to the inflammatory

reaction in allergic asthma has not been examined. In this study, we

demonstrate that tissue recruitment of monocytes is a prominent part

of the inflammatory reaction in the lungs of children and adolescents

with fatal asthma attacks. The majority of the accumulating monocytes

expressed MMP10, a molecule potentially involved in tissue migration.

The robust recruitment of monocytes to the lungs of paediatric

and adolescent patients with fatal asthma is consistent with a previ-

ous study of children hospitalized due to asthma exacerbations,

which displayed increased numbers of activated monocytes in the

circulation.9 Furthermore, in a mouse model of asthma, incoming

monocytes were identified as crucial local orchestrators during the

effector phase of allergic inflammation,8 whereas cDCs were more

important for the initial sensitization process in the draining lymph

nodes. Thus, it is reasonable to suggest that the massively elicited

monocytes observed in the patients may play a similar role. Our

study did not reveal striking differences in the number of lung‐resi-
dent macrophages between asthmatics and non‐atopic controls, sug-

gesting that these cells do not have a prominent role during fatal

asthma attacks. Although our study is limited by a relatively small

sample size of autopsy material, the expression levels of the markers

used to identify cell subsets were reportedly not significantly altered

within the 48 hours’ post‐mortem.23,24

In this study, it was not possible to identify the final fate of the

recruited monocytes. Mouse models indicate that most monocytes

recruited during acute lung injury experience apoptosis as inflamma-

tion resolves.25 However, a recent study of human duodenal trans-

plants suggested that monocytes migrating to the mucosae during

homoeostasis differentiate into macrophages, characterized by a

maturation process involving S100A8/A9 downregulation and the

progressive decrease in responsiveness to pro‐inflammatory stim-

uli.18 Moreover, inflammation of mucosal tissues supports a highly

increased recruitment of monocytes and alters their final differentia-

tion from regulatory macrophages to inflammatory monocytes,8,26,27

underscoring that the developmental fate of incoming monocytes is

highly dependent on the tissue environment upon migration. Mouse

models also indicate that lung‐resident DCs might partially arise from

blood monocytes during the steady state,28,29 but robust markers

applicable to histological sections for separation of monocyte‐
derived macrophages and DCs are not available. Moreover, lymph

node homing capacity and T‐cell stimulatory potential cannot be

inferred from tissue staining. Although functional data are lacking,

our finding of monocytes accumulation in the lower airways of fatal

asthma attacks more likely reflects that inflammatory events in the

asthmatic lung promote a large influx of monocytes that become

“arrested” in a pro‐inflammatory state. Importantly, the correlation

between monocyte infiltration in the bronchial mucosa and the

thickness of the basement membrane of the bronchial epithelium

suggests that these cells might contribute not only to the inflamma-

tory reaction, but also to the remodelling processes.

We also found that CD68+S100A8/A9+ monocytes accumulated in

the alveolar walls of asthmatics, and that some of them were able to

migrate to the airway lumen. Previous studies have reported an influx of

lymphocytes and eosinophils into alveolar tissue of asthma patients.30

The recruitment of monocytes to the lung parenchyma after allergen

challenge had been previously identified in mouse models of asthma,31

but data from human asthmatic lungs have been lacking. Together, these

findings identify the alveolar compartment as an active site of inflamma-

tion during severe asthma. A recent study showed that adult patients

with fatal asthma attacks display increased numbers of myofibroblasts

in the lung parenchyma,32 suggesting that this anatomical compartment

could also be affected by the tissue remodelling process.

Migration of cells within the tissue depends on several factors

including the expression of MMPs with the ability to cleave the large

biomolecules of the ECM, thus facilitating the movement of migrating

cells.20,33 Interestingly, we found that most of the accumulating mono-

cytes expressed MMP10. Recently, MMP10 was reported to be

expressed by mouse bone marrow‐derived macrophages during exper-

imental models of inflammation20,34; thus, MMP10 might play a role in

the motility of monocytes that accumulated in the peripheral airways.

Our results suggest that CD68+S100A8/A9+ monocytes consti-

tute potential therapeutic targets for airway allergy. In this regard,

the inhibition of monocytes is probably one of the multiple actions

of inhaled corticosteroids in asthma.35 Moreover, mouse models sug-

gest that blocking monocyte recruitment by targeting CCR2 reduces

lung inflammation in asthma.8 Additionally, MMP10 antagonism

might substantially reduce monocyte migration within the inflamed

lungs. Further research exploring the therapeutic potential of antago-

nizing the recruitment and migration of monocytes in human airway

allergy may provide new therapeutic approaches for severe asthma.
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