136 research outputs found

    Serine Phosphorylation of HIV-1 Vpu and Its Binding to Tetherin Regulates Interaction with Clathrin Adaptors

    Get PDF
    HIV-1 Vpu prevents incorporation of tetherin (BST2/ CD317) into budding virions and targets it for ESCRT-dependent endosomal degradation via a clathrin-dependent process. This requires a variant acidic dileucine-sorting motif (ExxxLV) in Vpu. Structural studies demonstrate that recombinant Vpu/tetherin fusions can form a ternary complex with the clathrin adaptor AP-1. However, open questions still exist about Vpu's mechanism of action. Particularly, whether endosomal degradation and the recruitment of the E3 ubiquitin ligase SCFβTRCP1/2 to a conserved phosphorylated binding site, DSGNES, are required for antagonism. Re-evaluation of the phenotype of Vpu phosphorylation mutants and naturally occurring allelic variants reveals that the requirement for the Vpu phosphoserine motif in tetherin antagonism is dissociable from SCFβTRCP1/2 and ESCRT-dependent tetherin degradation. Vpu phospho-mutants phenocopy ExxxLV mutants, and can be rescued by direct clathrin interaction in the absence of SCFβTRCP1/2 recruitment. Moreover, we demonstrate physical interaction between Vpu and AP-1 or AP-2 in cells. This requires Vpu/tetherin transmembrane domain interactions as well as the ExxxLV motif. Importantly, it also requires the Vpu phosphoserine motif and adjacent acidic residues. Taken together these data explain the discordance between the role of SCFβTRCP1/2 and Vpu phosphorylation in tetherin antagonism, and indicate that phosphorylation of Vpu in Vpu/tetherin complexes regulates promiscuous recruitment of adaptors, implicating clathrin-dependent sorting as an essential first step in tetherin antagonism

    Infection by a foliar endophyte elicits novel arabidopside-based plant defence reactions in its host, Cirsium arvense

    Get PDF
    Endophytic fungi live asymptomatically within plants. They are usually regarded as non-pathogenic or even mutualistic, but whether plants respond antagonistically to their presence remains unclear, particularly in the little-studied associations between endophytes and nong-raminoid herbaceous plants. We investigated the effects of the endophyte Chaetomium cochlioides on leaf chemistry in Cirsium arvense. Plants were sprayed with spores; leaf material from both subsequent new growth and the sprayed leaves was analysed 2 wk later. Infection frequency was 91% and63% for sprayed and new growth, respectively, indicating that C. cochlioides rapidly infects new foliage. Metabolomic analyses revealed marked changes in leaf chemistry with infection, especially in new growth. Changes in several novel oxylipin metabolites were detected, including arabi-dopsides reported here for the first time in a plant species other than Arabidopsis thaliana,and a jasmonate-containing galactolipid. The production of these metabolites in response to endophyte presence, particularly in newly infected foliage, suggests that endophytes elicit similar chemical responses in plants to those usually produced following wounding, herbivory and pathogen invasion. Whether en-dophytes benefit their hosts may depend on a complex series of chemically mediated interactions between the plant, the endophyte, other microbial colonists and natural enemies

    Automated Speckle Interferometry of Known Binaries

    Full text link
    Astronomers have been measuring the separations and position angles between the two components of binary stars since William Herschel began his observations in 1781. In 1970, Anton Labeyrie pioneered a method, speckle interferometry, that overcomes the usual resolution limits induced by atmospheric turbulence by taking hundreds or thousands of short exposures and reducing them in Fourier space. Our 2022 automation of speckle interferometry allowed us to use a fully robotic 1.0-meter PlaneWave Instruments telescope, located at the El Sauce Observatory in the Atacama Desert of Chile, to obtain observations of many known binaries with established orbits. The long-term objective of these observations is to establish the precision, accuracy, and limitations of this telescope's automated speckle interferometry measurements. This paper provides an early overview of the Known Binaries Project and provide example results on a small-separation (0.27") binary, WDS 12274-2843 B 228

    A central component of the N1 event-related brain potential could index the early and automatic inhibition of the actions systematically activated by objects

    Get PDF
    Stimuli of the environment, like objects, systematically activate the actions they are associated to. These activations occur extremely fast. Nevertheless, behavioural data reveal that, in most cases, these activations are then automatically inhibited, around 100 ms after the occurrence of the stimulus. We thus tested whether this early inhibition could be indexed by a central component of the N1 event-related brain potential (ERP). To achieve that goal, we looked at whether this ERP component is greater in tasks that could increase the inhibition and in trials where reaction times happen to be long. The illumination of a real space bar of a keyboard out of the dark was used as a stimulus. To maximize the modulation of the inhibition, the task participants had to perform was manipulated across blocks. A look-only task and a count task were used to increase inhibition and an immediate press task was used to decrease it. ERPs of the two block-conditions where presses had to be prevented and where the largest central N1s were predicted were compared to those elicited in the press task, differentiating the ERPs to the third of the trials where presses were the slowest from the ERPs to the third of the trials with the fastest presses. Despite larger negativities due to motor potentials and despite greater attention likely in immediate press-trials, central N1s were found to be minimal for the fastest presses, intermediate for the slowest ones and maximal for the two no-press conditions. These results thus provide a strong support for the idea that the central N1 indexes an early and short lasting automatic inhibition of the actions systematically activated by objects. They also confirm that the strength of this automatic inhibition spontaneously fluctuates across trials and tasks. On the other hand, just before N1s, parietal P1s were found greater for fastest presses. They might thus index the initial activation of these actions. Finally, consistent with the idea that N300s index late inhibition processes, that occur preferentially when the task requires them, these ERPs were quasi absent for fast presses trials and much larger in the three other conditions

    Children must be protected from the tobacco industry's marketing tactics.

    Get PDF
    • …
    corecore