25 research outputs found

    Polq-Mediated End Joining Is Essential for Surviving DNA Double-Strand Breaks during Early Zebrafish Development

    Get PDF
    SummaryError-prone repair of DNA double-strand breaks (DSBs) has been postulated to occur through classical non-homologous end joining (NHEJ) in systems ranging from nematode somatic tissues to zebrafish embryos. Contrary to this model, we show that zebrafish embryos mutant for DNA polymerase theta (Polq), a critical component of alternative end joining (alt-EJ), cannot repair DSBs induced by CRISPR/Cas9 or ionizing radiation. In the absence of DSBs, polq mutants are phenotypically normal, but they do not survive mutagenesis and display dramatic differences in the mutation profiles compared with the wild-type. These results show that alt-EJ repair is essential and dominant during the early development of a vertebrate

    Efficient Mutagenesis by Cas9 Protein-Mediated Oligonucleotide Insertion and Large-Scale Assessment of Single-Guide RNAs

    Get PDF
    The CRISPR/Cas9 system has been implemented in a variety of model organisms to mediate site-directed mutagenesis. A wide range of mutation rates has been reported, but at a limited number of genomic target sites. To uncover the rules that govern effective Cas9-mediated mutagenesis in zebrafish, we targeted over a hundred genomic loci for mutagenesis using a streamlined and cloning-free method. We generated mutations in 85% of target genes with mutation rates varying across several orders of magnitude, and identified sequence composition rules that influence mutagenesis. We increased rates of mutagenesis by implementing several novel approaches. The activities of poor or unsuccessful single-guide RNAs (sgRNAs) initiating with a 5′ adenine were improved by rescuing 5′ end homogeneity of the sgRNA. In some cases, direct injection of Cas9 protein/sgRNA complex further increased mutagenic activity. We also observed that low diversity of mutant alleles led to repeated failure to obtain frame-shift mutations. This limitation was overcome by knock-in of a stop codon cassette that ensured coding frame truncation. Our improved methods and detailed protocols make Cas9-mediated mutagenesis an attractive approach for labs of all sizes

    CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering

    No full text
    In just 3 years CRISPR genome editing has transformed biology, and its popularity and potency continue to grow. New CRISPR effectors and rules for locating optimum targets continue to be reported, highlighting the need for computational CRISPR targeting tools to compile these rules and facilitate target selection and design. CHOPCHOP is one of the most widely used web tools for CRISPR- and TALEN-based genome editing. Its overarching principle is to provide an intuitive and powerful tool that can serve both novice and experienced users. In this major update we introduce tools for the next generation of CRISPR advances, including Cpf1 and Cas9 nickases. We support a number of new features that improve the targeting power, usability and efficiency of CHOPCHOP. To increase targeting range and specificity we provide support for custom length sgRNAs, and we evaluate the sequence composition of the whole sgRNA and its surrounding region using models compiled from multiple large-scale studies. These and other new features, coupled with an updated interface for increased usability and support for a continually growing list of organisms, maintain CHOPCHOP as one of the leading tools for CRISPR genome editing. CHOPCHOP v2 can be found at http://chopchop.cbu.uib.no

    CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering

    Get PDF
    In just 3 years CRISPR genome editing has transformed biology, and its popularity and potency continue to grow. New CRISPR effectors and rules for locating optimum targets continue to be reported, highlighting the need for computational CRISPR targeting tools to compile these rules and facilitate target selection and design. CHOPCHOP is one of the most widely used web tools for CRISPR- and TALEN-based genome editing. Its overarching principle is to provide an intuitive and powerful tool that can serve both novice and experienced users. In this major update we introduce tools for the next generation of CRISPR advances, including Cpf1 and Cas9 nickases. We support a number of new features that improve the targeting power, usability and efficiency of CHOPCHOP. To increase targeting range and specificity we provide support for custom length sgRNAs, and we evaluate the sequence composition of the whole sgRNA and its surrounding region using models compiled from multiple large-scale studies. These and other new features, coupled with an updated interface for increased usability and support for a continually growing list of organisms, maintain CHOPCHOP as one of the leading tools for CRISPR genome editing. CHOPCHOP v2 can be found at http://chopchop.cbu.uib.n

    Internal guide RNA interactions interfere with Cas9-mediated cleavage

    No full text
    The CRISPR/Cas system uses guide RNAs (gRNAs) to direct sequence-specific DNA cleavage. Not every gRNA elicits cleavage and the mechanisms that govern gRNA activity have not been resolved. Low activity could result from either failure to form a functional Cas9-gRNA complex or inability to recognize targets in vivo. Here we show that both phenomena influence Cas9 activity by comparing mutagenesis rates in zebrafish embryos with in vitro cleavage assays. In vivo, our results suggest that genomic factors such as CTCF inhibit mutagenesis. Comparing near-identical gRNA sequences with different in vitro activities reveals that internal gRNA interactions reduce cleavage. Even though gRNAs containing these structures do not yield cleavage-competent complexes, they can compete with active gRNAs for binding to Cas9. These results reveal that both genomic context and internal gRNA interactions can interfere with Cas9-mediated cleavage and illuminate previously uncharacterized features of Cas9-gRNA complex formation

    CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering

    Get PDF
    In just 3 years CRISPR genome editing has transformed biology, and its popularity and potency continue to grow. New CRISPR effectors and rules for locating optimum targets continue to be reported, highlighting the need for computational CRISPR targeting tools to compile these rules and facilitate target selection and design. CHOPCHOP is one of the most widely used web tools for CRISPR- and TALEN-based genome editing. Its overarching principle is to provide an intuitive and powerful tool that can serve both novice and experienced users. In this major update we introduce tools for the next generation of CRISPR advances, including Cpf1 and Cas9 nickases. We support a number of new features that improve the targeting power, usability and efficiency of CHOPCHOP. To increase targeting range and specificity we provide support for custom length sgRNAs, and we evaluate the sequence composition of the whole sgRNA and its surrounding region using models compiled from multiple large-scale studies. These and other new features, coupled with an updated interface for increased usability and support for a continually growing list of organisms, maintain CHOPCHOP as one of the leading tools for CRISPR genome editing. CHOPCHOP v2 can be found at http://chopchop.cbu.uib.n

    Impairments of cerebellar structure and function in a zebrafish KO of neuropsychiatric risk gene znf536

    No full text
    Abstract Genetic variants in ZNF536 contribute to the risk for neuropsychiatric disorders such as schizophrenia, autism, and others. The role of this putative transcriptional repressor in brain development and function is, however, largely unknown. We generated znf536 knockout (KO) zebrafish and studied their behavior, brain anatomy, and brain function. Larval KO zebrafish showed a reduced ability to compete for food, resulting in decreased total body length and size. This phenotype can be rescued by segregating the homozygous KO larvae from their wild-type and heterozygous siblings, enabling studies of adult homozygous KO animals. In adult KO zebrafish, we observed significant reductions in anxiety-like behavior and social interaction. These znf536 KO zebrafish have decreased cerebellar volume, corresponding to decreased populations of specific neuronal cells, especially in the valvular cerebelli (Va). Finally, using a Tg[mbp:mgfp] line, we identified a previously undetected myelin structure located bilaterally within the Va, which also displayed a reduction in volume and disorganization in KO zebrafish. These findings indicate an important role for ZNF536 in brain development and implicate the cerebellum in the pathophysiology of neuropsychiatric disorders
    corecore