602 research outputs found

    Spin-Peierls transition with strong structural fluctuations in the vanadium oxide VOSb2_{2}O4_{4}

    Full text link
    We report on the magnetic susceptibility and electron spin resonance measurements on polycrystalline samples of the vanadium oxide VOSb2_{2}O4_{4}, a quasi-one dimensional S=1/2 Heisenberg system. We show that the susceptibility vanishes at zero temperature, as in a gapped system, and we argue that this is due to a spin-Peierls transition with strong structural fluctuations.Comment: 5 pages, 4 figure

    Experimental study of the competition between Kondo and RKKY interactions for Mn spins in a model alloy system

    Full text link
    The quasicrystal Al-Pd-Mn is a model system for an experimental study of the competition between Ruderman-Kittel-Kasuya-Yoshida (RKKY) and Kondo interactions. First, specific of such alloys, only a few Mn atoms carry an effective spin and their concentration x is tunable over several orders of magnitude, even though the Mn amount is almost constant. Second, the characteristic energy scales for the interactions lie in the Kelvin range. Hence we could study the magnetization on both side of these energy scales, covering a range of temperatures [0.1-100 K] and magnetic fields (mu_B H/k_B= 0 to 5 K) for 22 samples and x varying over 2 decades. Using very general Kondo physics arguments, and thus carrying out the data analysis with no preconceived model, we found a very robust and simple result: The magnetization is a sum of a pure Kondo (T_K=3.35K) and a pure RKKY contributions, whatever the moment concentration is and this surprisingly up to the concentration where the RKKY couplings dominate fully and thus cannot be considered as a perturbation.Comment: 18 pages, 18 figure

    Disordered cold regulated 15 proteins protect chloroplast membranes during freezing through binding and folding, but do not stabilize chloroplast enzymes in-vivo

    Get PDF
    Freezing can severely damage plants, limiting geographical distribution of natural populations and leading to major agronomical losses. Plants native to cold climates acquire increased freezing tolerance during exposure to low nonfreezing temperatures in a process termed cold acclimation. This involves many adaptative responses, including global changes in metabolite content and gene expression, and the accumulation of cold-regulated (COR) proteins, whose functions are largely unknown. Here we report that the chloroplast proteins COR15A and COR15B are necessary for full cold acclimation in Arabidopsis (Arabidopsis thaliana). They protect cell membranes, as indicated by electrolyte leakage and chlorophyll fluorescence measurements. Recombinant COR15 proteins stabilize lactate dehydrogenase during freezing in vitro. However, a transgenic approach shows that they have no influence on the stability of selected plastidic enzymes in vivo, although cold acclimation results in increased enzyme stability. This indicates that enzymes are stabilized by other mechanisms. Recombinant COR15 proteins are disordered in water, but fold into amphipathic a-helices at high osmolyte concentrations in the presence of membranes, a condition mimicking molecular crowding induced by dehydration during freezing. X-ray scattering experiments indicate protein-membrane interactions specifically under such crowding conditions. The COR15-membrane interactions lead to liposome stabilization during freezing. Collectively, our data demonstrate the requirement for COR15 accumulation for full cold acclimation of Arabidopsis. The function of these intrinsically disordered proteins is the stabilization of chloroplast membranes during freezing through a folding and binding mechanism, but not the stabilization of chloroplastic enzymes. This indicates a high functional specificity of these disordered plant proteins

    Direct observation of the influence of the As-Fe-As angle on the Tc of superconducting SmFeAsO1x_{1-x}Fx_{x}

    Get PDF
    The electrical resistivity, crystalline structure and electronic properties calculated from the experimentally measured atomic positions of the compound SmFeAsO0.81_{0.81}F0.19_{0.19} have been studied up to pressures ~20GPa. The correlation between the pressure dependence of the superconducting transition temperature (Tc) and crystallographic parameters on the same sample shows clearly that a regular FeAs4_{4} tetrahedron maximizes Tc, through optimization of carrier transfer to the FeAs planes as indicated by the evolution of the electronic band structures.Comment: 15pages, 4 figure

    Thermal Conductivity Anisotropy in Superconducting UPt3UPt_3

    Full text link
    Recent thermal conductivity measurements on UPt3UPt_3 single crystals by Lussier et al. indicate the existence of a strong b--c anisotropy in the superconducting state. We calculate the thermal conductivity in various unconventional candidate states appropriate for the UPt3UPt_3 ``B phase" and compare with experiment, specifically the E2uE_{2u} and E1gE_{1g} (1,i)(1,i) states predicted in some Ginzburg-Landau analyses of the phase diagram. For the simplest realizations of these states over spherical or ellipsoidal Fermi surfaces, the normalized E2uE_{2u} conductivity is found, surprisingly, to be completely isotropic. We discuss the effects of inelastic scattering and realistic Fermi surface anisotropy, and deduce constraints on the symmetry class of the UPt3UPt_3 ground state.Comment: 4 postscript pages, UFL102

    Heat Transport and the Nature of the Order Parameter in Superconducting UPt3UPt_3

    Full text link
    Recent thermal conductivity data on the heavy fermion superconductor UPt3UPt_3 have been interpreted as offering support for an E2uE_{2u} model of the order parameter as opposed to an E1gE_{1g} model. In this paper, we analyze this issue from a theoretical standpoint including the detailed effects of Fermi surface and gap anisotropy. Our conclusion is that although current data put strong constraints on the gap anisotropy, they cannot definitively distinguish between these two models. Measurements on samples of varying quality could be decisive in this regard, however.Comment: 8 pages, revtex, 15 uunencoded postscript figure

    On the low temperature properties and specific anisotropy of pure anisotropically paired superconductors

    Full text link
    Dependences of low temperature behavior and anisotropy of various physical quantities for pure unconventional superconductors upon a particular form of momentum direction dependence for the superconducting order parameter (within the framework of the same symmetry type of superconducting pairing) are considered. A special attention is drawn to the possibility of different multiplicities of the nodes of the order parameter under their fixed positions on the Fermi surface, which are governed by symmetry. The problem of an unambiguous identification of a type of superconducting pairing on the basis of corresponding experimental results is discussed. Quasiparticle density of states at low energy for both homogeneous and mixed states, the low temperature dependences of the specific heat, penetration depth and thermal conductivity, the I-V curves of SS and NS tunnel junctions at low voltages are examined. A specific anisotropy of the boundary conditions for unconventional superconducting order parameter near TcT_c for the case of specular reflection from the boundary is also investigated.Comment: 20 page

    Anomalous magnetic field dependence of the thermodynamic transition line in the isotropic superconductor (K,Ba)Bi03

    Get PDF
    Thermodynamic (specific heat, reversible magnetization, tunneling spectroscopy) and transport measurements have been performed on high quality (K,Ba)BiO3_3 single crystals. The temperature dependence of the magnetic field HCpH_{Cp} corresponding to the onset of the specific heat anomaly presents a clear positive curvature. HCpH_{Cp} is significantly smaller than the field HΔH_\Delta for which the superconducting gap vanishes but is closely related to the irreversibility line deduced from transport data. Moreover, the temperature dependence of the reversible magnetization present a strong deviation from the Ginzburg--Landau theory emphasazing the peculiar nature of the superconducting transition in this material.Comment: 4 pages, 4 figures, 28 reference

    Anomalous dependence of the c-axis polarized Fe B1g_{1g} phonon mode with Fe and Se concentrations in Fe1+y_{1+y}Te1x_{1-x}Sex_x

    Get PDF
    We report an investigation of the lattice dynamical properties in a range of Fe1+y_{1+y}Te1x_{1-x}Sex_{x} compounds, with special emphasis on the c-axis polarized vibration of Fe with B1g_{1g} symmetry, a Raman active mode common to all families of Fe-based superconductors. We have carried out a systematic study of the temperature dependence of this phonon mode as a function of Se xx and excess Fe yy concentrations. In parent compound Fe1+y_{1+y}Te, we observe an unconventional broadening of the phonon between room temperature and magnetic ordering temperature TNT_N. The situation smoothly evolves towards a regular anharmonic behavior as Te is substituted for Se and long range magnetic order is replaced by superconductivity. Irrespective to Se contents, excess Fe is shown to provide an additional damping channel for the B1g_{1g} phonon at low temperatures. We performed Density Functional Theory (DFT) ab-initio calculations within the local density approximation (LDA) to calcuate the phonon frequencies including magnetic polarization and Fe non-stoichiometry in the Virtual Crystal Approximation (VCA). We obtained a good agreement with the measured phonon frequencies in the Fe-deficient samples, while the effects of Fe excess are poorly reproduced. This may be due to excess Fe-induced local magnetism and low energy magnetic fluctuations that can not be treated accurately within these approaches. As recently revealed by neutron scattering and μ\mu-SR studies, these phenomena occur in the temperature range where anomalous decay of the B1g_{1g} phonon is observed, and suggests a peculiar coupling of this mode with local moments and spin fluctuations in Fe1+y_{1+y}Te1x_{1-x}Sex_{x}
    corecore