257 research outputs found

    Results of minimally toxic nonmyeloablative transplantation in patients with sickle cell anemia and β-thalassemia

    Get PDF
    AbstractWe describe previously transfused patients with sickle cell disease (n = 6) and thalassemia (n = 1) who received nonmyeloablative hematopoietic stem cell transplantation (HCT) to induce stable (full or partial) donor engraftment. Patients were 3 to 20 years (median, 9 years) old. All 7 received pretransplantation fludarabine and 200 cGy of total body irradiation; 2 patients also received horse antithymocyte globulin. Patients received bone marrow (n = 6) or peripheral blood stem cells (n = 1) from HLA-identical siblings, followed by a combination of mycophenolate mofetil and cyclosporine or tacrolimus for postgrafting immunosuppression. After nonmyeloablative HCT, absolute neutrophil counts were <0.5 × 109/L and <0.2 × 109/L for a median of 5 days (range, 0–13 days) and 0 days (range 0–13 days), respectively. A median of 0 (range, 0–9) platelet transfusions were administered. No grade IV nonhematologic toxicities were observed. One patient experienced grade II acute graft-versus-host disease. Two months after transplantation, 6 of 7 patients had evidence of donor chimerism (range, 25%–85%). Independent of red blood cell transfusions, these 6 patients initially had increased total hemoglobin and hemoglobin A concentrations and a reduction of reticulocytosis and transfusion requirements. There were no complications attributable to sickle cell disease during the interval of transient mixed chimerism. However, after posttransplantation immunosuppression was tapered, there was loss of the donor graft, and all patients experienced autologous hematopoietic recovery and disease recurrence. One patient did not engraft. The duration of transient mixed chimerism ranged from 97 to 441 days after transplantation in patients 4 and 6, respectively, and persisted until immunosuppressive drugs were discontinued after transplantation. In summary, the nonmyeloablative HCT regimens described here produced minimal toxicity and resulted in transient donor engraftment in 6 of 7 patients with hemoglobinopathies. Although complications from the underlying hemoglobinopathies did not occur during the period of mixed chimerism, these results suggest that stable (full or partial) donor engraftment after nonmyeloablative HCT is more difficult to achieve among immunocompetent pediatric patients with hemoglobinopathies than among adults with hematologic malignancies, perhaps in part because recipients may have been sensitized to minor histocompatibility antigens of their donor by preceding blood transfusions

    Hierarchical complexity of the macro-scale neonatal brain

    Get PDF
    The human adult structural connectome has a rich nodal hierarchy, with highly diverse connectivity patterns aligned to the diverse range of functional specializations in the brain. The emergence of this hierarchical complexity in human development is unknown. Here, we substantiate the hierarchical tiers and hierarchical complexity of brain networks in the newborn period, assess correspondences with hierarchical complexity in adulthood, and investigate the effect of preterm birth, a leading cause of atypical brain development and later neurocognitive impairment, on hierarchical complexity. We report that neonatal and adult structural connectomes are both composed of distinct hierarchical tiers and that hierarchical complexity is greater in term born neonates than in preterms. This is due to diversity of connectivity patterns of regions within the intermediate tiers, which consist of regions that underlie sensorimotor processing and its integration with cognitive information. For neonates and adults, the highest tier (hub regions) is ordered, rather than complex, with more homogeneous connectivity patterns in structural hubs. This suggests that the brain develops first a more rigid structure in hub regions allowing for the development of greater and more diverse functional specialization in lower level regions, while connectivity underpinning this diversity is dysmature in infants born preterm

    The Timing System of LIGO Discoveries

    Full text link
    LIGO's mission critical timing system has enabled gravitational wave and multi-messenger astrophysical discoveries as well as the rich science extracted. Achieving optimal detector sensitivity, detecting transient gravitational waves, and especially localizing gravitational wave sources, the underpinning of multi-messenger astrophysics, all require proper gravitational wave data time-stamping. Measurements of the relative arrival times of gravitational waves between different detectors allow for coherent gravitational wave detections, localization of gravitational wave sources, and the creation of skymaps. The carefully designed timing system achieves these goals by mitigating phase noise to avoid signal up-conversion and maximize gravitational wave detector sensitivity. The timing system also redundantly performs self-calibration and self-diagnostics in order to ensure reliable, extendable, and traceable time stamping. In this paper, we describe and quantify the performance of these core systems during the latest O3 scientific run of LIGO, Virgo, and KAGRA. We present results of the diagnostic checks done to verify the time-stamping for individual gravitational wave events observed during O3 as well as the timing system performance for all of O3 in LIGO Livingston and LIGO Hanford. We find that, after 3 observing runs, the LIGO timing system continues to reliably meet mission requirements of timing precision below 1 μ\mus with a significant safety margin.Comment: 11 pages, 8 figure

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Dark sectors 2016 Workshop: community report

    Get PDF
    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years

    Advanced Preparation Makes Research in Emergencies and Isolation Care Possible: The Case of Novel Coronavirus Disease (COVID-19)

    Get PDF
    The optimal time to initiate research on emergencies is before they occur. However, timely initiation of high-quality research may launch during an emergency under the right conditions. These include an appropriate context, clarity in scientific aims, preexisting resources, strong operational and research structures that are facile, and good governance. Here, Nebraskan rapid research efforts early during the 2020 coronavirus disease pandemic, while participating in the first use of U.S. federal quarantine in 50 years, are described from these aspects, as the global experience with this severe emerging infection grew apace. The experience has lessons in purpose, structure, function, and performance of research in any emergency, when facing any threat
    corecore