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Abstract

The human adult structural connectome has a rich nodal hierarchy, with highly diverse connectivity patterns aligned to the
diverse range of functional specializations in the brain. The emergence of this hierarchical complexity in human
development is unknown. Here, we substantiate the hierarchical tiers and hierarchical complexity of brain networks in the
newborn period, assess correspondences with hierarchical complexity in adulthood, and investigate the effect of preterm
birth, a leading cause of atypical brain development and later neurocognitive impairment, on hierarchical complexity. We
report that neonatal and adult structural connectomes are both composed of distinct hierarchical tiers and that
hierarchical complexity is greater in term born neonates than in preterms. This is due to diversity of connectivity patterns
of regions within the intermediate tiers, which consist of regions that underlie sensorimotor processing and its integration
with cognitive information. For neonates and adults, the highest tier (hub regions) is ordered, rather than complex, with
more homogeneous connectivity patterns in structural hubs. This suggests that the brain develops first a more rigid
structure in hub regions allowing for the development of greater and more diverse functional specialization in lower level
regions, while connectivity underpinning this diversity is dysmature in infants born preterm.

Key words: developing brain, dMRI, hierarchical complexity, network analysis, newborn, structural connectome

Introduction
The integrity of brain development during pregnancy and the
newborn period is critical for life-long cognitive function and
brain health. During the second and third trimesters of preg-
nancy, there is a phase of rapid brain maturation character-
ized by volumetric growth, increases in cortical complexity,

white matter (WM) organization, and myelination (Boardman
and Counsell, 2019). Early exposure to extrauterine life due
to preterm birth affects around 11% of births and is closely
associated with neurodevelopmental, cognitive, and psychiatric
impairment (Nosarti et al., 2012; Mathewson et al., 2017; Wolke
et al., 2019), and alterations to development (Batalle et al., 2018)
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that are apparent using in vivo imaging techniques. At the macro
scale, these alterations can be characterized by charting WM
connections between brain regions using diffusion MRI (dMRI)
(Ball et al., 2013; Brown et al., 2014; Van Den Heuvel et al., 2015;
Batalle et al., 2017; Lee et al., 2019; Zhao et al., 2019a; Galdi et al.,
2020).

The resulting structural brain network– or connectome– has
been extensively explored using popular network metrics in
the neonatal brain. Findings indicate similar characteristics
as found ubiquitously in real-world networks, including
local and global efficiency, high clustering coefficient and
short characteristic path length (i.e. small worldness), and
a strong rich club coefficient (Ball et al., 2014; Brown et al.,
2014; Van Den Heuvel et al., 2015; Batalle et al., 2017; Lee et al.,
2019). Often they reveal remarkable structural and functional
architectural facsimiles between the newborn and adult brain
(Ball et al., 2014; Telford et al., 2017; Stoecklein et al., 2019).
Hierarchical complexity (HC) is a new network measure char-
acterizing the diversity of connectivity patterns found across
hierarchically equivalent network nodes (i.e. nodes that have the
same degree). Importantly, it distinguishes connectomes from
different random null models where other common metrics
fail and is observed to reflect the hierarchical and functionally
diverse capacities of the human brain (Smith et al., 2019), while
not being a general feature of most other real-world networks
(Smith, 2019b). Studying the degree hierarchy has also provided
a tractable signature of brain network architecture in the adult
connectome: four hierarchical tiers broadly comprise different
categories of functional processing—cognitive, sensorimotor,
integrative, and memory and emotion (Smith et al., 2019).

In this work, we aimed to establish whether hierarchical
complexity observed in adults is already detectable in the new-
born period, supporting the hypothesis that HC is an intrinsic
property of human brain networks, arising from organizational
principles that drive brain development. We also ask whether
atypical brain development after preterm birth is reflected in HC
differences, relative to term infants. To achieve these goals, we
developed an approach to assess HC in the newborn period. This
approach first introduces a systematic method to define the
hierarchical structure of connectomes using group-aggregated
degree distributions. We establish this in a cohort of neonates
alongside a cohort of healthy adults for reference. We investigate
resemblance in the connectome degree hierarchy between birth
and adulthood. Finally, we explore the effect of preterm birth on
HC in the newborn period.

Material and methods
Participants and data acquisition

For the present work, two datasets were used:
- Theirworld Edinburgh Birth Cohort (TEBC): Participants

were recruited as part of a longitudinal study designed to inves-
tigate the effects of preterm birth on brain structure and long
term outcome (Boardman et al., 2020). The study was conducted
according to the principles of the Declaration of Helsinki, and
ethical approval was obtained from the UK National Research
Ethics Service. Parents provided written informed consent. A
total of 136 neonates (77 preterm [with gestational age at birth
< 32 weeks] and 59 term) underwent MRI at term equivalent age
at the Edinburgh Imaging Facility: Royal Infirmary of Edinburgh,
University of Edinburgh, UK. Details are provided in Table 1.
Of the preterm infants, 22 had bronchopulmonary dysplasia,

5 had necrotising enterocolitis, and 3 required treatment for
retinopathy of prematurity.

A Siemens MAGNETOM Prisma 3 T MRI clinical scanner
(Siemens Healthcare Erlangen, Germany) and 16-channel
phased-array paediatric head coil were used to acquire 3D T2-
weighted SPACE images (T2w) (voxel size = 1-mm isotropic, TE
= 409 ms and TR = 3200 ms) and axial dMRI data. Diffusion
MRI images were acquired in two separate acquisitions to
reduce the time needed to re-acquire any data lost to motion
artifacts: the first acquisition consisted of 8 baseline volumes
(b = 0 s/mm2 [b0]) and 64 volumes with b = 750 s/mm2, the
second consisted of 8 b0, 3 volumes with b = 200 s/mm2,
6 volumes with b = 500 s/mm2 and 64 volumes with b =
2500 s/mm2. An optimal angular coverage for the sampling
scheme was applied (Caruyer et al., 2013). In addition, an
acquisition of 3 b0 volumes with an inverse phase encoding
direction was performed. All dMRI images were acquired using
single-shot spin-echo echo planar imaging (EPI) with 2-fold
simultaneous multislice and 2-fold in-plane parallel imaging
acceleration and 2-mm isotropic voxels; all three diffusion
acquisitions had the same parameters (TR/TE 3400/78.0 ms).
Images affected by motion artifacts were re-acquired multiple
times as required; dMRI acquisitions were repeated if signal loss
was seen in 3 or more volumes. Infants were fed and wrapped
and allowed to sleep naturally in the scanner. Pulse oximetry,
electrocardiography, and temperature were monitored. Flexible
earplugs and neonatal earmuffs (MiniMuffs, Natus) were used
for acoustic protection. All scans were supervised by a doctor
or nurse trained in neonatal resuscitation. Post acquisition,
absolute and relative in-scanner motion were quantified by
averaging voxel displacement across all voxels (computed as
three translations and three rotations around the x, y, and z axes)
(Bastiani et al., 2019). Absolute displacement was computed with
respect to the reference volume, while relative displacement
was computed with respect to the previous volume. A summary
measure for each subject was calculated as the average (absolute
or relative) displacement across all volumes. There were no
differences in either motion measure between the preterm and
the term group (t-test P > 0.1).

- Human Connectome project (HCP): We used the 100 Unre-
lated Subjects sample from the HCP 3T dataset, consisting of
T1-weighted and dMRI data from 100 healthy subjects. Of these,
6 subjects were excluded because of known anatomical abnor-
malities (https://wiki.humanconnectome.org/pages/viewpage.a
ction?pageId=88901591), resulting in a sample of 94 subjects (age
range: 22–36 years; 44 male). T1-weighted data were acquired
with 0.7 mm isotropic voxel size, TE = 2.14 ms, and TR = 2400 ms.
dMRI data were acquired with a 1.25-mm isotropic voxel size, TE
= 89.5 ms, and TR 5520 ms, with three shells with b = 1000, 2000,
and 3000 s/mm2, each shell with 90 diffusion weighted volumes
and 6 non-weighted images (Essen et al., 2012).

Data preprocessing

Theirworld Edinburgh Birth Cohort Diffusion MRI processing
was performed as follows: for each subject the two dMRI
acquisitions were first concatenated and then denoised using a
Marchenko–PasturPCA-based algorithm (Veraart et al., 2016); the
eddy current, head movement, and EPI geometric distortions
were corrected using outlier replacement and slice-to-volume
registration (Andersson et al., 2003, 2016, 2017; Andersson
and Sotiropoulos, 2016); bias field inhomogeneity correction
was performed by calculating the bias field of the mean
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Table 1 Neonatal participant characteristics

Term (N=59) Preterm (N=77) term vs. preterm

PMA at birth (weeks) 39.49 (36.42–42) 29.48 (23.42–32) p = 1.98 × 10−23

Birth weight (grams) 3484 (2556–4560) 1278 (454–2100) p = 1.01 × 10−52

PMA at scan (weeks) 41.84 (38.28–43.84) 40.97 (38–44.56) p = 4.72 × 10−5

M:F ratio 31:28 43:34 p = 0.8341

PMA = Postmenstrual age, M = male, F = female. The last column reports the uncorrected P-values of the group differences computed with t-test for normally distributed
continous variables, Wilcoxon rank-sum test for non normally distributed continuous variables, and chi-squared test for categorical variables.

Figure 1. An example of the parcellation and the segmentation from three different subjects: a) a preterm born baby, b) a term born baby, and c) an adult subject. From
left to right, the parcellation and the four different tissue probability maps included in the five tissue type file: gray matter, subcortical gray matter, white matter, and

cerebrospinal fluid. For the neonates, the maps are overlaid onto the T2w volumes for the neonates and onto the T1w volume for the adult.

b0 volume and applying the correction to all the volumes
(Tustison et al., 2010). The T2w images were processed using
the minimal processing pipeline of the developing human
connectome project (dHCP) to obtain the bias field corrected
T2w, the brain masks, the tissue segmentation, and the different
tissue probability maps (Makropoulos et al., 2014, 2018). For
the parcellation, the 10 manually labelled subjects of the M-
CRIB atlas (Alexander et al., 2017) were registered to the bias
field corrected T2w using affine and symmetric normalization
(SyN) (Avants et al., 2008), and then the registered labels of
the ten atlases were merged using joint label fusion (Wang et
al., 2013), resulting in a parcellation containing 84 regions of
interest (ROIs). The five tissue-type file needed to perform the
tractography was generated by combining the tissue probability
maps obtained from the dHCP pipeline with the subcortical
structures derived from the parcellation process (https://git.e
cdf.ed.ac.uk/jbrl/neonatal-5TT), an overview of the results can
be seen in Figure 1a and Figure 1b. Finally, the mean b0 EPI
volume of each subject was co-registered to their structural T2w
volume using boundary-based registration (Greve and Fischl,
2009), then the inverse transformation was used to propagate
ROIs label and the five tissue-type file to dMRI space.

Human Connectome Project The HCP dataset was already
preprocessed, as described in (Glasser et al., 2013). Briefly,
dMRI data were corrected for head motion and geometrical
distortions arising from eddy currents and susceptibility
artifacts (Sotiropoulos et al., 2013). Finally, the dMRI were
aligned to the structural T1 image. The T1w was parcel-
lated using the Desikan–Killany parcellation (Desikan et al.,
2006), resulting in 84 ROIs. Using the T1w, the probability maps of
the different tissues were obtained to create the five tissue-type
file (Zhang et al., 2001; Patenaude et al., 2011) (Fig. 1c).

Tractography and network creation

The tractography was performed using constrained spherical
deconvolution (CSD) (Tournier et al., 2007). For both datasets, a
multi-tissue response function was calculated (Dhollander et al.,
2016), the only difference is that for the neonatal cohort the FA
threshold of the algorithm was reduced to 0.1. For each cohort,
the average response functions were calculated. Then, the multi-
tissue fiber orientation distribution (FOD) was calculated (Jeuris-
sen et al., 2014) with the average response function using a
Lmax = 8. For the HCP dataset three FODs were calculated, one
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for each tissue type WM, gray matter (GM), and cerebrospinal
fluid (CSF); while for the TEBC only two (WM/CSF). Finally, a
joint bias field correction and multi-tissue informed log-domain
intensity normalization on the FODs images was performed
(Raffelt et al., 2018).

Tractography was then performed with the iFOD2 algorithm
(Tournier et al., 2010) using anatomically constrained tractogra-
phy (Smith et al., 2012), generating 10 millions of streamlines
with a cutoff of 0.05 (default), using backtrack (Smith et al., 2012)
and a dynamic seeding (Smith et al., 2015b). To accommodate for
the difference in brain size between neonates and adults, the
length of the fibers was set based on previous literature; with a
minimum length of 20 mm (Neher et al., 2017; Blesa et al., 2019)
and a maximum of 200 mm for the neonatal data (Blesa et al.,
2019) and of 250 mm for the HCP dataset (Smith et al., 2012). To be
able to quantitatively assess the connectivity, SIFT2 was applied
to the resulting tractograms (Smith et al., 2015b).

The connectivity matrix was constructed using a robust
approach, a 2-mm radial search at the end of the streamline
was performed to allow the tracts to reach the GM parcellation
(Smith et al., 2015a, Yeh et al., 2019). Each connectivity matrix
was multiplied by their μ coefficient obtained from the SIFT2
process, because the sum of the streamline weights needs to
be proportional to units of fiber density for each subject (Smith
et al., 2020, 2015b). Resulting in

wij = μ
∑
sεSij

scs (1)

where wij is the total weight of the connection of the node i with
the node j, μ is the coefficient obtained from SIFT2, scs is the
SIFT2 weight of the streamline s, and s ∈ Sij represents all the
streamlines connecting the nodes i and j.

As the connectivity matrices derived from probabilistic trac-
tography are almost fully connected because of the presence of
spurious connections, thresholding is often applied to obtain a
sparser representation that is more likely to reflect the under-
lying network topology. We thresholded and binarized each
individual connectivity matrices to obtain networks with a 30%
density. This value is compatible with estimates from animal
and human studies and was previously adopted for the study of
human brain connectomes (Roberts et al., 2017; Buchanan et al.,
2020) and for similarly generated networks (Roberts et al., 2016).
To ensure that results were not biased to the selected threshold,
we ran both the tier modelling and the main HC experiments
across a range of thresholds (from 0.2 up to 0.4 in steps of 0.0005),
see Supplementary material sections S1 and S2. Results were
found to be consistent within this range.

Hierarchical complexity

The neighborhood of a network node is the set of all nodes with
which that node shares links, and the number of the neighbors
(and links) of a node is the nodal degree. The neighborhood
degree sequence of the node is then the ordered sequence of
degrees of the node’s neighbors, which is a particularly useful
tool for studying organizational principles of networks (Smith,
2019b). The hierarchical complexity of a network involves
computing the variability of neighborhood degree sequences
of nodes of the same degree. This provides a measure of
the diversity of connectivity patterns within the network
degree hierarchy (Fig. 2). Let G = (V, E) be a graph with nodes

V = {1, . . . , n} and links E = {(i, j) : i, j ∈ V}, and let K = {k1, . . . , kn}
be the set of degrees of G, where ki is the number edges adjacent
to node i. Further, let Kp be the set of nodes of degree p. For
neighborhood degree sequence sp

i = {sp
i (1), . . . , sp

i (p)} of node i of
degree p, the hierarchical complexity is

R = 1
D

∑
Kp ,|Kp |>1

1
p(|Kp| − 1)

⎛
⎝

p∑
j=1

⎛
⎝ ∑

i∈Kp

(sp
i ( j) − μp( j))2

⎞
⎠

⎞
⎠ (2)

where D is the number of distinct degrees in the network and
μp( j) is the mean of the jth entries of all p length neighborhood
degree sequences (Smith and Escudero, 2017). To compute the
hierarchical complexity within a hierarchical tier (defined as the
set of nodes with a given range of degrees), we used degree-
specific hierarchical complexity by averaging hierarchical com-
plexity over the range of degrees specific to the considered
tier.

Many network analyses are conducted at nodal levels. How-
ever, in general, complexity is a system-level description of inter-
acting components, and so, though we can provide a measure of
hierarchical complexity across hierarchical levels, we are unable
to provide a working definition of hierarchical complexity for
single nodes. A tier level analysis, as we conduct here, is the most
natural way of breaking down hierarchical complexity into finer
detail.

Configuration models
To control for the differences in degree distribution between
individual connectomes and the different populations (term and
preterm born and adult), we used configuration models (Maslov
and Sneppen, 2002). The configuration model fixes the number
of links at each node of the null model by providing each node
with a number of “stubs”, the number of which is the node’s
degree in the original network. Then, pairs of stubs are randomly
chosen across all nodes to establish new links. This process is
repeated until there are no stubs remaining; meanwhile, the
process is started again anytime a link is created, which either
attaches a node to itself or attaches two nodes that already have
an established link. This results in a random network that has
the same degree distribution of the original network, whereas
any organization is disrupted.

Hierarchical tiers
In addition to studying the hierarchical complexity of the whole
network, we performed a more refined analysis by dividing
the nodes of the network into different tiers, defined on the
basis of nodal degree. Previous work (Smith et al., 2019) split
each network into four tiers based on maximum degree mag-
nitudes, where each tier comprised a rounded 25% of degrees.
The first tier comprised nodes in the top 25% of degrees in
the network, the second tier comprised nodes with the next
25% of largest degrees, and so on. In our study, however, we
wished to assess whether the degree distributions would reveal
such tiers directly. To this end, we studied the group-aggregated
degree distributions, i.e. the distribution of the pooled degrees
of all nodes of all subjects within a group. We implemented an
automated computational procedure based on Gaussian Mix-
ture Modelling (GMM) to determine the tiers of the connectomes.
Essentially, the best GMM was chosen and the theoretical com-
ponents suggested by that model were taken as the tiers of
the connectomes. Subsequently, thresholds between tiers were
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Figure 2. Illustration of ordered and complex hierarchical networks. Tiers are determined by the degree of nodes, with nodes with the largest degrees in the top tier. Tier
2 nodes and links are highlighted. In an ordered hierarchy, all nodes of similar degree are connected in a similar fashion, while a complex hierarchy is characterized

by heterogeneous connectivity patterns across similar degree nodes.

defined at the point where GMM component distribution func-
tions intersected. See Supplementary material, section S1, for
full details. Of note, we are not aware of any previous literature
that has looked at group-aggregated degree distributions before,
which is certainly partly why these different components have,
until now, remained unnoticed.

Once tiers were defined, we implemented tier-based analysis
on both the structural connectomes and their configuration
models for comparison. To track the consistency of tiers across
groups (preterm born, term born, and adult) we computed the
number of times each node appeared in a given tier across par-
ticipants. For each tier, Pearson’s correlation coefficients were
then computed across these node proportions between preterm
and term, preterm and adult, and term and adult.

Hemispheric symmetry in network neighborhoods and common
connections
As a post-hoc analysis, to better characterize the network
topology and understand the results showed by the hierarchical
complexity, we investigated the effect of cross-hemisphere
neighborhood symmetry within tiers to probe deeper into the
complex organization underlying the neonatal connectomes,
following the insight that higher symmetry is associated with
higher order and thus lower complexity (Smith, 2019b). We
defined a measure of hemispheric symmetry based on the
simple matching index between the sets of connections of
a pair of homotopic regions, normalized with respect to the
expected number of matching connections between two sets of
connections selected independently at random. For full details
see section S3 of Supplementary Material. We also studied the
percentage of common and uncommon connections within
tiers, following the hypothesis that adults have more well-
established network architecture and have more common
connections within tiers than neonates. An ROI was defined
as commonly connected to a given tier if it shared links with at
least 80% of that tier’s ROIs. An ROI was defined as uncommonly
connected to a given tier if it shared links with at most 20%, but
not none, of that tier’s ROIs.

Characterizing connections within tiers
To further characterize the hierarchical tiers, we examined
the types of connections within each tier. More specifically,
we assigned connections to different categories according to
whether they were 1) central-cortical, 2) intra-hemispheric
cortico-cortical, 3) inter-hemispheric cortico-cortical, 4) central,

5) cortico-cerebellar, 6) central-cerebellar, or 7) cerebellar. To
obtain a group level solution, we assigned each region to a
tier if it was included in that tier in at least two thirds of the
population and we built a group connectome where we retained
connections that were shared by at least two thirds of subjects
in the group. In neonates, we also studied the distribution of
connection lengths per tier and per group (where individual
values were normalized by total brain volume).

Statistical analysis

Wilcoxon rank sum tests were carried out to assess the
significance of the differences of distributions of network index
values between the structural connectomes and configuration
models. Unless otherwise specified, the Benjamini–Hochberg
false detection rate procedure was applied on all reported
P-values at the strict level of q = 0.05. The cut-off of the false
detection rate in this study was 0.0222 (i.e. maximum acceptable
P-value), which reflects the large proportion of differences found
here. The effect sizes were also computed with Cohen’s d.

Data availability

The hierarchical complexity code can be found in (Smith, 2019a).
Reasonable requests for original image data will be considered
through the BRAINS governance process (www.brainsimageba
nk.ac.uk) (Job et al., 2017).

Results
In this study, our first aim was to define the tier organization
of the neonatal connectome, and our second was to understand
patterns of hierarchical complexity within these tiers both gen-
erally with respect to null models, and specifically in the context
of preterm birth. In each case, due to the large differences
expected in brain structure as well as in data acquisition, pro-
cessing, and parcellation of brain images between neonate and
adult groups, we used the adult group as a qualitative reference
for the neonatal group, while group-wise quantitative analysis
was reserved for comparisons between term and preterm born
neonates.

Hierarchical tier organization

First, we inspected the existence of tiers in the structural con-
nectomes of both term-born and preterm-born neonate groups
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Figure 3. Aggregated degree distributions of neonatal groups, top, and the
adult group, bottom. Four distinct peaks are noted in the degree distributions

of neonatal connectomes and corresponding peaks are also seen in the adult
connectomes. The four Gaussian Mixture Model components are shown as C4,
C3, C2, and C1. These are taken as the natural tiers of the connectomes and black
dotted lines indicate the thresholds between tiers. Greater consistency between

neonates and adults is found by consolidating the tiers as indicated by Tier A, B,
and C.

and adults by considering their group-aggregated degree dis-
tributions (i.e. all degrees appearing in all connectomes of the
group), Figure 3. This revealed distributions composed of sev-
eral components identifiable from several distinct peaks with
troughs in between. To quantitatively decompose these distribu-
tions into distinct components, we performed Gaussian Mixture
Modelling (GMM). We varied the number of components in the
modelling, from 2 up to 6, to find the best fit. The GMM models
with best fit were identified by minimizing the Bayesian Infor-
mation Criterion (BIC), which finds the best trade-off of high
accuracy and low model complexity (i.e. avoiding overfitting).
For each group the model with four components was found to
minimize the BIC. To check the consistency of this with respect
to network density threshold, we varied the threshold between
0.2 and 0.4 in steps of 0.0005. The four-component GMM was
consistently the best model across thresholds and the theoret-
ical Gaussian components derived by the model identified the
same underlying components of the connectome distributions
across thresholds. Due to the overlapping elements of the distri-
butions, we set the threshold between tiers at the point where
the probability density functions of two adjacent components
crossed each other, i.e. the point where the next component
begins to have more likelihood of being the source of the node
at that degree. For full details on all of these considerations the
reader is referred to the Supplementary material, Section S1.

Note, in the neonate group, it was observed that the GMM
failed to identify what was observable as two separate com-
ponents at the right tail of the distribution, which we called
Tier 1b and Tier 1a in Figure 3. Analysis of ROIs in these tiers
showed that Tier 1a in neonates consisted solely of the tha-
lamus, indicating the hyper-connectedness of this region in

Figure 4. Cortical and sub-cortical representations colored by tier. N/A means

non assigned. Due to the display plane used, two areas are not shown, the
accumbens area, which was assigned (in both hemispheres) to Tier 4 in all three
populations; and the cerebellum, which was assigned (in both hemispheres) to
Tier 3 in all three populations.

neonates. Indeed, consistency between neonates and adults was
better achieved by consolidating Tier 1a and Tier 1b in neonates
as Tier A, comparable to Tier 1 in adults. Correlations between
ROI proportions in Tiers 2 and 3 between adults and neonates
were significantly increased by consolidating these tiers as a
single Tier B (from Pearson’s correlation coefficient of 0.5405 for
tier 2 and 0.4949 for Tier 3 up to 0.6577 for the consolidated Tier
B). This indicated that these components in adults and neonates
were not directly comparable, while greater comparability was
made possibly by combining them. Tier 4 ROIs did show high
consistency between adults and neonates (Pearson’s correlation
of 0.7505) and was simply relabelled as Tier C. See section S1 of
Supplementary Material for full details.

We can see the 1 to 4 Tier distributions over the brain for
each population in Figure 4. For this figure, an ROI was assigned
to a tier if it was included in that tier in at least two thirds of
the population. For the A–C Tier distribution see Supplementary
Figure S6. The average number of nodes in each tier for the three
groups of subjects is reported in Supplementary Table S2. The
list of regions within each tier is provided as supplementary
material (Table S3).

Hierarchical complexity

A very strong agreement was observed between the tiers of
the neonate groups (Pearson’s correlations all > 0.95), whereas
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Table 2 Average degree by tier (mean ± standard deviation) and P-values of group differences from Wilcoxon rank-sum tests

Average degree P-value

Adult Term Preterm Term vs. preterm

Tier A 50.31±0.96 44.44±1.32 43.96±1.42 0.0429
Tier B 25.40±0.62 27.48±0.43 27.67±0.34 0.0104*
Tier C 8.76±0.59 13.04±0.45 12.77±0.60 0.0033*

*Denotes significant difference after FDR correction.

differences were noted between tiers in neonates and in adults,
even after the consolidation of tiers described above (Supple-
mentary Table S1).

We directly compared the global HC and HC within tiers
for term and preterm born neonate groups using Wilcoxon
rank sum tests while using adult HC as a qualitative reference,
Figure 5. HC was significantly larger in term-born neonates than
preterm-born neonates (P = 0.0148, d = 0.3946). Global HC of
adult connectomes was observed to be much larger than both
neonate groups, indicating the expected trend that the term
group would exhibit characteristics between preterm and adults.
As the preterm and term group differed in mean PMA at the time
of scanning (Tab. 1), to test for potential confounding effects we
measured Pearson’s correlation between age and global HC for
the whole neonatal group and for the term and preterm group
separately, and found no significant association (uncorrected
P > 0.3). This is in agreement with previous results from Smith
et al. (2019), where no association with age was found in adults.
We also tested whether within the two groups HC was related
to PMA at birth or birth weight, and none of the correlations
was significant (P > 0.1). In addition, we tested the association
between HC and absolute and relative in scanner motion, and
also in this case we found no significant correlation (P > 0.06).

In the tier-based analysis, Tier B showed a corresponding
significant difference in HC with a stronger effect size (P =
1.9 × 10−5, d = 0.7056), while no difference was evident in any
other tier. Since global HC is a linear combination of the HC in
each tier and no effect was found in Tiers A or C, we inferred that
Tier B is likely the main cause of the global effect. To investigate
this possibility we performed 2-way non-parametric analysis of
variance for group × tier interaction. While both main effects
were significant, the interaction term was not; this relationship
requires further evaluation with a larger sample.

To get a general understanding of the trends of connectome
complexity globally and in each tier, we compared each com-
plexity value against those obtained for their corresponding
configuration models (networks with the same degree distribu-
tions but randomized connections). We conducted this analysis
for the adapted tier system to compare similar tiers across
neonates and adults. The results are shown in Figure 6. The find-
ings of global HC were confirmed in comparisons with configu-
ration models with term-born connectomes having significantly
greater HC than their configuration models, an effect that was
not seen in preterm-born connectomes after false discovery rate
(FDR) correction. An even larger significant difference was seen
in adults.

The result of greater complexity in Tier B of term-born
neonates was also confirmed in comparisons with configuration
models (Tier B in Fig. 6). Tier B showed a clear increase of
complexity compared with configuration models from preterm-
to term-born babies. Interestingly there was also a clearly
larger significant difference in adults. Surprisingly, Tier A

exhibited lower HC compared with configuration models in all
of the groups. This difference was evidently greater for adults
compared with neonates. While the effect size was again larger
in term- than in preterm-born neonates in Tier A, although with
comparable P-values. Again, this suggested that the trend in
term-born neonates moved away from preterm-born neonate
connectomes towards adult connectomes. Since configuration
models are the random null case, these results indicate that
Tier A is more ordered than expected by random chance and
becomes more ordered with maturation, while Tier B is more
complex than random chance and becomes more complex with
maturation.

Symmetry and common connections

We hypothesized that decreasing complexity in Tier A and
increasing complexity in Tier B from neonates to adults
reflected a systemic change whereby hub nodes create an
ordered core structure integrating information from lower order
nodes able to specialize into specific functional roles. To shed
more light on the neurobiological contributions behind our
results, we tested two possible contributors to the observed
trends of HC: i) the hemispheric symmetry of connectivity
patterns, and ii) commonality of ROIs connected to a given tier.
Theoretically, hemispheric symmetry of connectivity patterns
would influence HC because symmetric connectivity patterns
would reduce HC and asymmetric connectivity patterns would
increase HC (Smith, 2019b). Similarly, if the ROIs in one tier all
tended to connect to the same other ROIs in the connectome,
then this would decrease HC, and vice versa.

Table 3 reports the computed symmetry scores comparing
the neighborhoods of homotopic brain regions, averaged by
group and by tiers. We observed a consistent behavior across
groups of subjects, with Tier A being the most symmetric, and
decreasing symmetry from top to bottom tiers. Because it can be
expected that nodes with greater degree will have a larger over-
lap of symmetric connections, just due to having many connec-
tions and a limited number of nodes with which to make those
connections, we were cautious of interpreting these results as
a general pattern. The results suggested that adults in general
had less hemispherical symmetry across the connectome. From
this, we concluded that hemispheric symmetry was not a strong
contributing factor to HC, particularly increased symmetry in
Tier A was not evident and not contributing to the observed
increased order of Tier A nodes.

Another possible contributing factor to the increased order
seen in Tier A and increased complexity seen in Tier B would
be if all Tier A ROIs tended to connect more to the same ROIs
across the connectome while Tier B ROIs tended to exhibit less
common connections in adults. To study this, we measured
the number of common and uncommon connections made by
nodes in each tier. See section S4 of Supplementary Material
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Figure 5. Distribution of the global hierarchical complexity (R) for the three populations as rain cloud plots (top) and hierarchical complexity of the three tiers in
neonatal populations (bottom). Wilcoxon rank sum P-values and Cohen’s d values are shown for preterm versus term (all) and term versus adult (top). *Denotes

significant difference after FDR correction.

Table 3 Symmetry scores by tier (mean ± standard deviation) and P-values of group differences from Wilcoxon rank-sum tests

Symmetry P-value

Adult Term Preterm Term vs. preterm

Tier A 1.79 ± 0.03 1.84 ± 0.03 1.84 ± 0.03 0.0868
Tier B 1.61 ± 0.02 1.71 ± 0.02 1.70 ± 0.02 0.0013*
Tier C 1.21 ± 0.01 1.33 ± 0.02 1.32 ± 0.02 0.0188*

*Denotes significant difference after FDR correction.

for full details. While no significant differences were found
between term and preterm groups in any tier, Table 4, general
trends between adult and neonate connectomes aligned with
results of HC, with adults exhibiting more common connections
than neonates in Tier A and more uncommon connections than
neonates in Tier B, indicating that common and uncommon
connections were likely a contributing factor to HC trends.
This was further backed up by analysis of configuration
models where neonates exhibited statistically less uncommon
connections in Tier B to configuration models, while numbers of
uncommon connections in Tier B for adults were not statistically
distinguishable from configuration models, see supplementary
figure S9.

Characterization of connections within tiers

The pie charts in Supplementary Figure S10 show the dis-
tribution of connection types for each group of subjects. In

Table 4 The P-values of group differences from Wilcoxon rank-sum
tests between numbers of common and uncommon neighbors of
each tier

Tier A
common

Tier B
uncommon

Tier C
uncommon

Term vs. preterm 0.9439 0.2735 0.3948

both neonate groups in Tier A the majority of connections
is central-cortical (72/129 for term, 73/128 for preterm) and
most of the central connections are in this tier (32/59 for term,
31/54 for preterm). Tier B has the highest proportion of intra-
hemispheric cortico-cortical connections (352/812 for term,
368/829 for preterm) and most of the inter-hemispheric cortico-
cortical connections (92/109 for term, 87/103 for preterm). Tier C
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Figure 6. Distributions of hierarchical complexity globally (top) and for the different tiers of the three populations. Grey, yellow, and orange colors represent values for

adults, term born, and preterm born neonates, respectively, while blue represents the values of hierarchical complexity for their corresponding configuration models.
Wilcoxon rank sum P-values and Cohen’s d values are shown in top right corner of each plot. Axes as in top left plot. *Denotes significant difference after FDR correction.

has fewer connections, but the pattern of cortical connections
seems to mirror tier B. In comparison to neonates, adults
have proportionally more intra- (34/128) and inter-hemispheric
(45/128) cortico-cortical connections and fewer central (9/128)
and central-cortical connections (34/128) in Tier A, and a
slightly higher proportion of inter-hemispheric cortico-cortical
connections in Tier B (134/682), while in Tier C there is a higher
proportion of central-cortical connections (11/34) and a lower
proportion of intra-hemispheric cortico-cortical connections
(20/34). However, similarly to neonates, Tier B contains most of
the cortico-cortical connections.

A chi-square test comparing connection type proportions in
term versus preterm neonates found no group difference. When
considering connection type by tier in term versus preterm
neonates, we found a significant difference in the number of
intra-hemispheric connections in tiers B and C, which were
higher in the term group, and in the number of cortico-cerebellar
connections in Tier B, higher in the preterm group (Bonferroni
correction). The study of group aggregated connection lengths
revealed that, compared with the other tiers, tier B had on
average shorter connections in both neonates groups.

When comparing connection lengths between term and
preterm groups with a Wilcoxon rank-sum test, preterm infants
had longer connections in Tier A (p = 0.0001) and Tier B
(p = 0.0011), while there was no difference in tier C (p = 0.9545),
although overall the connection length distribution was similar
in the two groups (Supplementary Fig. S11).

Discussion
Tier analysis

Empirical observations of group-aggregated degree distributions
backed by GMM analysis revealed that the neonatal and adult
connectomes are both composed of four tiers; these findings
were consistent across a range of network density thresholds.
The original definition of hierarchical tiers was based on quar-
tiles of the maximum degree, which were defined strictly for
purposes of a more fine-grained analysis without any particular
hypothesis of functionality (Smith et al., 2019). These current
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findings, combining empirical observation with statistical mod-
elling, illuminate why that choice turned out to have biological
relevance, with tiers matching quite closely different functional
categories of nodes in adults.

Differences in tier composition were observed comparing
adult and neonatal connectomes. The regions comprising Tiers
1a and 1b in the neonates were grouped together in the highest
tier of the adult connectomes, while the regions comprising
Tiers 2 and 3 in the neonates showed greater consistency with
adult connectomes when these Tiers were combined. Correla-
tions of ROI tier designation patterns were low for Tiers 2 and
3, but substantially increased when combining these Tiers (see
Supplementary Table S1). This indicates a significant rearrange-
ment of these medium degree ROIs in the developing brain.

Tier 1a in neonates was consistently composed solely of
the thalamus. The thalamus forms a series of densely con-
nected processing loops with connectivity that covers large
portions of the cortex and the hippocampus (Behrens et al., 2003;
Aggleton et al., 2010; Grant et al., 2012). Among the subcortical
regions, the thalamus and its connections are most strongly
linked with supporting complex cognitive processes in adults,
and its connections appear most strongly susceptible to ageing,
partly via vascular risk (Cox et al., 2019a, 2019b, 2016). In early
life, prior work indicates that thalamo-cortical pathways are
important for the regulation of area-specific differentiation of
the developing brain (Boardman et al., 2006; Ball et al., 2013).
The early wave of migrating neurons relays thamalo-cortical
projections during late fetal and early preterm development,
and the thalamic nuclei may exhibit asynchronous maturational
trajectories: the posterior limb of the internal capsule (which
include the posterior thalamic radiations) appears to develop
earlier than the anterior limb (including anterior thalamic path-
ways (Hermoye et al., 2006; Dubois et al., 2014)). Tier 1 in adults,
on the other hand, also contained the superior frontal gyrus
and putamen (Tier 1b in neonates) as well as the precuneus
(Tier 2 in neonates). The pattern of regional asynchrony in the
developmental pattern of WM fiber organization and myeli-
nation may partly explain differences between neonatal and
adult brain hierarchical organization. WM pathway growth and
maturation spans a large time period, from fetal life through to
late adolescence; during development frontal and temporal WM
appears to show the most delayed developmental trajectories
in fractional anisotropy (FA) (Deoni et al., 2012), although given
that FA is likely to be differentially sensitive to the “local fiber
architectural millieu” in neonatal versus adult brains due to the
differential presence of myelin, one should be cautious about
directly attributing FA changes to any specific WM characteristic
across life course. Given that subcortico-cortical and association
fibres (cortico-cortical) especially in the frontal lobes exhibit
later maturation (Young et al., 2017), it is likely that the relative
shift up in degree of these regions represents more protracted
course of hodological maturation in these areas.

Tier 2 in adults consistently contained the post central, pre-
central, rostral middle frontal gyri, and the insulate, caudate, and
hippocampus. Some of these can be broadly classified as lower
order sensory processing regions; the poorer differentiation
between HC tiers in neonates could reflect that a large amount
of development of hierarchical organization occurs postnatally.
For example, one could conjecture that the developmental
period that ensues post-birth is the time during which there is
hierarchical differentiation between sensory processing regions
(Tier 2) and the heteromodal integration regions (Tier 3) that we
see in the adult brain. Longitudinal research will be central to

testing this hypothesis, and characterizing the changes in Tier
membership that occur through childhood.

Hierarchical complexity

The results on global complexity (Fig. 5) indicate greater HC in
the brains of infants born at term compared with brains of
preterm infants at term equivalent age; and HC in adults was
greater than in neonates. These observations indicate that HC
is altered in association with early exposure to extrauterine life
and that HC of the structural connectome develops throughout
childhood and adolescence until reaching the expected val-
ues of an adult healthy population. Comparing each popula-
tion against their configuration model revealed that preterm
complexity structure is not yet strongly distinguishable from
random, whereas in term born babies, a more complex hier-
archical structure is already present (Fig. 6). As expected from
previous results, this structure was clearly established in the
adult dataset (Smith et al., 2019).

The tier-based analysis revealed that the global difference
between term and preterm HC was due to the complexity evi-
dent in Tier B regions (Fig. 5), which has the largest number of
ROIs in term and preterm infants (see Fig. S6 in Supplemen-
tary Materials). At this age, the network segregation/integration
balance is still undergoing many changes, including the trans-
formation of the connectomic architecture from a relatively
randomized configuration to a well-organized one (Cao et al.,
2017).

When we compared the tiers against configuration models,
we found that Tier A was less complex than its respective
configuration model in all three populations while Tier B was
more complex and no differences were found for Tier C, Figure 5.
There were no differences in Tier A between term and preterm
infants. Tier A corresponds to the hubs of the brain, and the
lack of group difference in the neonatal period indicates that
this “core network” is resilient to prematurity. Taken together,
the findings are consistent with the hypothesis that term-born
infants have a greater cerebral maturation than preterm-born
infants, with topological properties that resemble more closely
the properties of the adult connectome.

Symmetry and common connections

Connectivity patterns in the adult brain were less symmetric
than in neonates. This is consistent with recent findings report-
ing that most genetic effects on structural variation in the cortex
are shared bilaterally and that asymmetry increases with age
(Kong et al., 2018). It is reasonable to infer that the same is true
of structural connectivity.

Surprisingly, we found that connectivity patterns in hub
regions become more homogeneous with age and consistently
more homogeneous than expected due to random chance. The
fronto-parietal network has long been associated with higher
cognitive processes such as general intelligence (Cox et al., 2019a;
Jung and Haier, 2007). As such, it may be that postnatal devel-
opment is important for establishing the emergent association
fibre development that facilitates this networks’ support for
higher order cognitive abilities.

The symmetry analysis and the comparison of common and
uncommon connections lead us to conclude that hub regions are
less symmetric in adults, while the connectivity patterns over all
hub regions become more homogeneous.
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Characterization of connections within tiers

The analysis of connection types and lengths within tiers sug-
gested that, overall, the increased complexity of tier B observed
in the term and the adult group might be related to the presence
of short-range cortico-cortical connections with highly variable
connectivity patterns, while tier A is composed of a network of
central-cortical regions with a more ordered structure, which is
established early in development. When comparing connections
between the term and the preterm group, the only differences
were observed in the number of intra-hemispheric connections
in tier B and C and the number of cortico-cerebellar connections
in tier B . However, it should be noted that in these analyses
connections were aggregated by type, while HC is likely to be
sensitive to the variability in how the regions are wired.

Related work

Comparing neonatal structural connectivity studies is challeng-
ing, due to the lack of a standardized protocol for dMRI process-
ing, parcellation, or network analysis (for a review on the topic
see Zhao et al. (2019b)). In the literature, an increased clustering
coefficient, modularity, local and global efficiency, and reduced
characteristic shortest path length have been found in term-
born infants compared against preterm-born infants scanned
at birth (Tymofiyeva et al., 2013; Ball et al., 2014; Brown et al.,
2014; Heuvel et al., 2015; Batalle et al., 2017). This translates in
networks becoming more efficiently connected with develop-
ment by achieving a trade-off between integration and segre-
gation (Zhao et al., 2019b). Two studies comparing term- with
preterm-born infants scanned at term equivalent age reported
an increased small worldness (Lee et al., 2019) and an increased
clustering coefficient (Ball et al., 2014) in preterm infants. This
suggests that the structural brain network after preterm birth is
reorganized in maximizing integrated and segregated process-
ing, implying resilience against prematurity associated pathol-
ogy (Lee et al., 2019). Our findings also indicate that some aspects
of connectome organization are resilient to preterm birth: there
is at least a part of the network—the main hubs (Tier A)—that
presents the same core structure at term in both term and
preterm infants.

Although the general framework of brain circuits is dictated
by genes and is in place by the time of birth (Keunen et al.,
2017), the emerging brain networks are still immature, and
chaotic unpredictable patterns of experiential signals from the
environment together with altered physiology (inflammation,
sub-optimal nutrition) can disrupt normal maturation (Short
and Baram, 2019). Accumulating evidence from imaging studies
supports the theory that preterm birth affects network matura-
tion and brain structure: reduced WM and GM volumes, altered
microstructure and atypical connectivity patterns (Boardman
and Counsell, 2019), at global and local levels (e.g., in the thala-
mocortical system (Boardman et al., 2006; Ball et al., 2013)) and
alterations in regions supporting neurocognitive and primary
motor/sensory functions (Bouyssi-Kobar et al., 2018), all suggest
delayed or atypical maturation associated with prematurity. Our
results, showing a reduced HC in preterm- compared with term-
born infants, corroborate this hypothesis and move towards
providing a framework within which to observe and understand
the developing brain as a complex hierarchical system.

Macro-scale connectivity gradients have been recently
applied to study neonatal functional connectome organization
(Larivière et al., 2020). The technique, which sorts brain regions

along a continuous axis on the basis or their connectivity profile,
revealed that although shortly after birth functional architecture
is already set to allow for mediated mechanisms (e.g. thalamo-
cortical integration), development prioritizes communication
within the sensori-motor and visual systems, while higher order
functional systems have an immature circuitry. This is in line
with our finding that the hierarchical tiers in neonates lack
the differentiation between sensory processing and association
areas seen in adults, even if the overall network already presents
a hierarchically complex organization.

A potential avenue for future research is to investigate
whether nodal properties other than degree vary in association
with network complexity, and to determine whether such prop-
erties enhance understanding of the hierarchical organization
of the human brain during development.

Conclusion
This study provides a new systems-level paradigm to under-
stand the macro-scale developing brain. It is the first to con-
sider the existence and implications of hierarchical tiers and
their contingent connectivity patterns in the neonatal brain.
We found that HC was greater in term-born neonates than in
preterm infants. Natural tiers were discovered in the group-
aggregated connectome degree distributions, with clear recon-
figurations occurring between neonates and adults in high level
and intermediate tiers. The tier-based analysis revealed that the
difference in complexity between neonatal groups was great-
est in neonatal Tier B, comprising regions involving sensori-
motor processing and regions integrating high order cognitive
and lower order sensorimotor processing. Comparisons with
configuration models revealed a hierarchical structure where
top tier hub regions were less complex (thus more ordered)
than expected by random chance while Tier B regions were
more complex than expected by random chance with statistical
results indicating these patterns were dysmature in preterm-
born neonates. The former result was at least partly due to
common ROIs to which hub regions connected, with the superior
frontal gyrus, putamen, and precuneus joining the thalamus
as hubs in adults. The complexity of tier B on the other hand
indicated the beginnings of specialisation of multifarious cor-
tical regions in neonates, with greater specialisation observed
in term-born neonates. We have demonstrated the potential of
this approach in a study of preterm birth, but these concepts
can be applied in more general settings to understand the neural
bases of cognition in health and disease. A natural extension of
this work would be analysis of the developmental trajectory of
HC across childhood and adolescence, and its variability in older
age. This would allow the investigation of deviations from nor-
mal progression associated with cognitive impairment, and any
brain disorder in early or later life that is characterized by alter-
ations in network topology and global connectivity patterns.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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