37 research outputs found

    The impact of COVID-19 on rheumatology training—results from the COVID-19 Global Rheumatology Alliance trainee survey

    Get PDF
    Objective: The aim was to evaluate the impact of the coronavirus disease 2019 (COVID-19) pandemic on the clinical experiences, research opportunities and well-being of rheumatology trainees. / Methods: A voluntary, anonymous, Web-based survey was administered in English, Spanish or French from 19 August 2020 to 5 October 2020. Adult and paediatric rheumatology trainees were invited to participate via social media and email. Using multiple-choice questions and Likert scales, the perceptions of trainees regarding the impact of the COVID-19 pandemic on patient care and redeployment, learning and supervision, research and well-being were assessed. / Results: There were 302 respondents from 33 countries, with 83% in adult rheumatology training. An increase in non-rheumatology clinical work was reported by 45%, with 68% of these having been redeployed to COVID-19. Overall, trainees reported a negative impact on their learning opportunities during rheumatology training, including outpatient clinics (79%), inpatient consultations (59%), didactic teaching (55%), procedures (53%), teaching opportunities (52%) and ultrasonography (36%). Impacts on research experiences were reported by 46% of respondents, with 39% of these reporting that COVID-19 negatively affected their ability to continue their pre-pandemic research. Burnout and increases in stress were reported by 50% and 68%, respectively. Physical health was negatively impacted by training programme changes in 25% of respondents. / Conclusion: The COVID-19 pandemic has had a substantial impact on rheumatology training and trainee well-being. Our study highlights the extent of this impact on research opportunities and clinical care, which are highly relevant to future curriculum planning and the clinical learning environment

    Association Between Race/Ethnicity and COVID-19 Outcomes in Systemic Lupus Erythematosus Patients From the United States: Data From the COVID-19 Global Rheumatology Alliance

    Get PDF
    OBJECTIVE: To determine the association between race/ethnicity and COVID-19 outcomes in individuals with systemic lupus erythematosus (SLE). METHODS: Individuals with SLE from the US with data entered into the COVID-19 Global Rheumatology Alliance registry between March 24, 2020 and August 27, 2021 were included. Variables included age, sex, race, and ethnicity (White, Black, Hispanic, other), comorbidities, disease activity, pandemic time period, glucocorticoid dose, antimalarials, and immunosuppressive drug use. The ordinal outcome categories were: not hospitalized, hospitalized with no oxygenation, hospitalized with any ventilation or oxygenation, and death. We constructed ordinal logistic regression models evaluating the relationship between race/ethnicity and COVID-19 severity, adjusting for possible confounders. RESULTS: We included 523 patients; 473 (90.4%) were female and the mean ± SD age was 46.6 ± 14.0 years. A total of 358 patients (74.6%) were not hospitalized; 40 patients (8.3%) were hospitalized without oxygen, 64 patients (13.3%) were hospitalized with any oxygenation, and 18 (3.8%) died. In a multivariable model, Black (odds ratio [OR] 2.73 [95% confidence interval (95% CI) 1.36–5.53]) and Hispanic (OR 2.76 [95% CI 1.34–5.69]) individuals had higher odds of more severe outcomes than White individuals. CONCLUSION: Black and Hispanic individuals with SLE experienced more severe COVID-19 outcomes, which is consistent with findings in the US general population. These results likely reflect socioeconomic and health disparities and suggest that more aggressive efforts are needed to prevent and treat infection in this population

    SARS-CoV-2 breakthrough infections among vaccinated individuals with rheumatic disease : Results from the COVID-19 Global Rheumatology Alliance provider registry

    Get PDF
    Funding Information: members of the COVID-19 Global Rheumatology Alliance and do not necessarily represent the views of the American College of Rheumatology (ACR), EULAR, the UK National Health Service (NHS), the National Institute for Health Research (NIHR), the UK Department of Health or any other organisation. Competing interests KLH reports she has received non-personal speaker’s fees from AbbVie and grant income from BMS, UCB and Pfizer, all unrelated to this manuscript; KLH is supported by the NIHR Manchester Biomedical Research Centre. LG reports personal consultant fees from AbbVie, Amgen, BMS, Biogen, Celgene, Gilead, Janssen, Lilly, Novartis, Pfizer, Samsung Bioepis, Sanofi-Aventis and UCB, and grants from Amgen, Lilly, Janssen, Pfizer, Sandoz, Sanofi and Galapagos, all unrelated to this manuscript. AS reports research grants from a consortium of 14 companies (among them AbbVie, BMS, Celltrion, Fresenius Funding Information: Kabi, Gilead/Galapagos, Lilly, Mylan/Viatris, Hexal, MSD, Pfizer, Roche, Samsung, Sanofi-Aventis and UCB) supporting the German RABBIT register and personal fees from lectures for AbbVie, MSD, Roche, BMS, Lilly and Pfizer, all unrelated to this manuscript. LC has not received fees or personal grants from any laboratory, but her institute works by contract for laboratories among other institutions, such as AbbVie Spain, Eisai, Gebro Pharma, Merck Sharp & Dohme España, Novartis Farmaceutica, Pfizer, Roche Farma, Sanofi-Aventis, Astellas Pharma, Actelion Pharmaceuticals España, Grünenthal and UCB Pharma. EF-M reports personal consultant fees from Boehringer Ingelheim Portugal and that LPCDR received support for specific activities: grants from AbbVie, Novartis, Janssen-Cilag, Lilly Portugal, Sanofi, Grünenthal, MSD, Celgene, Medac, Pharmakern and GAfPA; grants and non-financial support from Pfizer; and non-financial support from Grünenthal, outside the submitted work. IB reports personal consultant fees from AbbVie, Novartis, Pfizer and Janssen, all unrelated to this manuscript. JZ reports speaker fees from AbbVie, Novartis and Janssen/Johnson & Johnson, all unrelated to this manuscript. GR-C reports personal consultant fees from Eli Lilly and Novartis, all unrelated to this manuscript. JS is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers: R01 AR077607, P30 AR070253 and P30 AR072577), and the R Bruce and Joan M Mickey Research Scholar Fund. JS has received research support from Amgen and Bristol Myers Squibb and performed consultancy for Bristol Myers Squibb, Gilead, Inova, Janssen and Optum, unrelated to this work. LW receives speaker’s bureau fees from Aurinia Pharma, unrelated to this manuscript. SB reports no competing interests related to this work. He reports non-branded consulting fees for AbbVie, Horizon and Novartis (all <10000).MGMhasnocompetinginterestsrelatedtothiswork.SheservesasapatientconsultantforBMS,BIJNJandAurinia(all<10 000). MGM has no competing interests related to this work. She serves as a patient consultant for BMS, BI JNJ and Aurinia (all <10 000). RG reports no competing interests related to this work. Outside of this work she reports personal and/or speaking fees from AbbVie, Janssen, Novartis, Pfizer and Cornerstones and travel assistance from Pfizer (all <10000).JHreportsnocompetinginterestsrelatedtothiswork.HeissupportedbygrantsfromtheRheumatologyResearchFoundationandhassalarysupportfromtheChildhoodArthritisandRheumatologyResearchAlliance.HehasperformedconsultingforNovartis,SobiandBiogen,allunrelatedtothiswork(<10 000). JH reports no competing interests related to this work. He is supported by grants from the Rheumatology Research Foundation and has salary support from the Childhood Arthritis and Rheumatology Research Alliance. He has performed consulting for Novartis, Sobi and Biogen, all unrelated to this work (<10 000). ESi reports non-financial support from Canadian Arthritis Patient Alliance, outside the submitted work. PS reports personal fees from the American College of Rheumatology/Wiley Publishing, outside the submitted work. ZW reports grant support from Bristol Myers Squibb and Principia/Sanofi and performed consultancy for Viela Bio and MedPace, outside the submitted work. His work is supported by grants from the National Institutes of Health. PMM has received consulting/speaker’s fees from AbbVie, BMS, Celgene, Eli Lilly, Galapagos, Janssen, MSD, Novartis, Orphazyme, Pfizer, Roche and UCB, all unrelated to this study. PMM is supported by the National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC). PCR reports no competing interests related to this work. Outside of this work PCR reports personal fees from AbbVie, Atom Bioscience, Eli Lilly, Gilead, GlaxoSmithKline, Janssen, Kukdong, Novartis, UCB, Roche and Pfizer; meeting attendance support from BMS, Pfizer and UCB; and grant funding from Janssen, Novartis, Pfizer and UCB Pharma (all <$10 000). JY reports no competing interests related to this work. Her work is supported by grants from the National Institutes of Health (K24 AR074534 and P30 AR070155). Outside of this work, she has received research grants or performed consulting for Gilead, BMS Foundation, Pfizer, Aurinia and AstraZeneca. Funding Information: Twitter Jean Liew @rheum_cat, Loreto Carmona @carmona_loreto, Pedro M Machado @pedrommcmachado and Philip C Robinson @philipcrobinson Contributors All authors contributed to the study design, data collection, interpretation of results and review/approval of the final submitted manuscript. JL and MG are guarantors for this manuscript. Funding MG reports grants from the National Institutes of Health, NIAMS, outside the submitted work. KLH is supported by the NIHR Manchester Biomedical Research Centre. JS is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers: R01 AR077607, P30 AR070253 and P30 AR072577), and the R Bruce and Joan M Mickey Research Scholar Fund. JH is supported by grants from the Rheumatology Research Foundation. ZW is supported by grants from the National Institutes of Health. PMM is supported by the National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC). JY is supported by grants from the National Institutes of Health (K24 AR074534 and P30 AR070155). Publisher Copyright: ©Objective. While COVID-19 vaccination prevents severe infections, poor immunogenicity in immunocompromised people threatens vaccine effectiveness. We analysed the clinical characteristics of patients with rheumatic disease who developed breakthrough COVID-19 after vaccination against SARS-CoV-2.  Methods. We included people partially or fully vaccinated against SARS-CoV-2 who developed COVID-19 between 5 January and 30 September 2021 and were reported to the Global Rheumatology Alliance registry. Breakthrough infections were defined as occurring ≥14 days after completion of the vaccination series, specifically 14 days after the second dose in a two-dose series or 14 days after a single-dose vaccine. We analysed patients' demographic and clinical characteristics and COVID-19 symptoms and outcomes. Results SARS-CoV-2 infection was reported in 197 partially or fully vaccinated people with rheumatic disease (mean age 54 years, 77% female, 56% white). The majority (n=140/197, 71%) received messenger RNA vaccines. Among the fully vaccinated (n=87), infection occurred a mean of 112 (±60) days after the second vaccine dose. Among those fully vaccinated and hospitalised (n=22, age range 36-83 years), nine had used B cell-depleting therapy (BCDT), with six as monotherapy, at the time of vaccination. Three were on mycophenolate. The majority (n=14/22, 64%) were not taking systemic glucocorticoids. Eight patients had pre-existing lung disease and five patients died. Conclusion. More than half of fully vaccinated individuals with breakthrough infections requiring hospitalisation were on BCDT or mycophenolate. Further risk mitigation strategies are likely needed to protect this selected high-risk population.publishersversionPeer reviewe

    Early experience of COVID-19 vaccination in adults with systemic rheumatic diseases : Results from the COVID-19 Global Rheumatology Alliance Vaccine Survey

    Get PDF
    Funding Information: Competing interests SES has received funding from the Vasculitis Foundation and the Vasculitis Clinical Research Consortium unrelated to this work. JL has received research grant funding from Pfizer unrelated to this work. ES is a Board Member of the Canadian Arthritis Patient Alliance, a patient run, volunteer-based organisation whose activities are primarily supported by independent grants from pharmaceutical companies. MP was supported by a Rheumatology Research Foundation Scientist Development grant. DA-R is a Scientific Advisor for GlaxoSmithKilne unrelated to this work. FB reports personal fees from Boehringer, Bone Therapeutics, Expanscience, Galapagos, Gilead, GSK, Merck Sereno, MSD, Nordic, Novartis, Pfizer, Regulaxis, Roche, Sandoz, Sanofi, Servier, UCB, Peptinov, TRB Chemedica and 4P Pharma outside of the submitted work. No funding relevant to this manuscript. RC: speakers bureau for Janssen, Roche, Sanofi, AbbVie. KD reports no COI-unpaid volunteer president of the Autoinflammatory Alliance. Any grants or funding from pharma is received by the non-profit organisation only. CLH received funding under a sponsored research agreement unrelated to the data in the paper from Vifor Pharmaceuticals. LeK has received a research grant from Lilly unrelated to this work. AHJK participated in consulting, advisory board or speaker's bureau for Alexion Pharmaceuticals, Aurinia Pharmaceuticals, Annexon Biosciences, Exagen Diagnostics and GlaxoSmithKilne and received funding under a sponsored research agreement unrelated to the data in the paper from GlaxoSmithKline. JSingh has received consultant fees from Crealta/ Horizon, Medisys, Fidia, PK Med, Two Labs, Adept Field Solutions, Clinical Care Options, Clearview Healthcare Partners, Putnam Associates, Focus Forward, Navigant Consulting, Spherix, MedIQ, Jupiter Life Science, UBM, Trio Health, Medscape, WebMD and Practice Point Communications; and the National Institutes of Health and the American College of Rheumatology. JSingh owns stock options in TPT Global Tech, Vaxart Pharmaceuticals and Charlotte’s Web Holdings. JSingh previously owned stock options in Amarin, Viking and Moderna Pharmaceuticals. JSingh is on the speaker’s bureau of Simply Speaking. JSingh is a member of the executive of Outcomes Measures in Rheumatology (OMERACT), an organisation that develops outcome measures in rheumatology and receives arms-length funding from eight companies. JSingh serves on the FDA Arthritis Advisory Committee. JSingh is the chair of the Veterans Affairs Rheumatology Field Advisory Committee. JSingh is the editor and the Director of the University of Alabama at Birmingham (UAB) Cochrane Musculoskeletal Group Satellite Center on Network Meta-analysis. NSingh is supported by funding from the Rheumatology Research Foundation Investigator Award and the American Heart Association. MFU-G has received research support from Pfizer and Janssen, unrelated to this work. SB reports personal fees from Novartis, AbbVie, Pfizer and Horizon Pharma, outside the submitted work. RG reports personal fees from AbbVie New Zealand, Cornerstones, Janssen New Zealand and personal fees and non-financial support Pfizer New Zealand (all <US$10 000) outside the submitted work. PMM reports personal fees from AbbVie, Eli Lilly, Janssen, Novartis, Pfizer and UCB, grants and personal fees from Orphazyme, outside the submitted work. PCR reports personal fees from AbbVie, Gilead, Lilly and Roche, grants and personal fees from Novartis, UCB Pharma, Janssen and Pfizer and non-financial support from BMS, outside the submitted work. PS reports honoraria from Social media editor for @ACR_Journals, outside the submitted work. ZSW reports grants from NIH, BMS and Principia/ Sanofi and personal fees from Viela Bio and MedPace, outside the submitted work. JY reports personal fees from Pfizer and Eli Lilly, and grants and personal fees from AstraZeneca, outside the submitted work. MJL reports grants from American College of Rheumatology, during the conduct of the study and consulting fees from AbbVie, Amgen, Actelion, Boehringer Ingelheim, BMS, Celgene, Gilead, J&J, Mallinckrodt, Novartis, Pfizer, Roche, Sandoz, Sanofi, Sobi and UCB, outside the submitted work. LGR was supported by the Intramural Research Program of the National Institute of Environmental Health Sciences (NIEHS; ZIAES101074) of the National Institutes of Health. JH reports grants from Childhood Arthritis and Rheumatology Research Alliance (CARRA) and Rheumatology Research Alliance, and personal fees from Novartis, Pfizer and Biogen, outside the submitted work. JSimard received research grant funding from the National Institutes of Health unrelated to this work (NIAMS: R01 AR077103 and NIAID R01 AI154533). JSparks has performed consultancy for AbbVie, Boehringer Ingelheim, Bristol-Myers Squibb, Gilead, Inova Diagnostics, Optum and Pfizer unrelated to this work. Funding Information: Funding This study was supported by the European Alliance of Associations for Rheumatology and American College of Rheumatology Research and Education Foundation. Dr. Lisa Rider's involvement was supported in part by the Intramural Research Program of the National Institutes of Health, National Institute of Environmental Health Sciences. Publisher Copyright: © Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.Background. We describe the early experiences of adults with systemic rheumatic disease who received the COVID-19 vaccine. Methods From 2 April to 30 April 2021, we conducted an online, international survey of adults with systemic rheumatic disease who received COVID-19 vaccination. We collected patient-reported data on clinician communication, beliefs and intent about discontinuing disease-modifying antirheumatic drugs (DMARDs) around the time of vaccination, and patient-reported adverse events after vaccination. Results We analysed 2860 adults with systemic rheumatic diseases who received COVID-19 vaccination (mean age 55.3 years, 86.7% female, 86.3% white). Types of COVID-19 vaccines were Pfizer-BioNTech (53.2%), Oxford/AstraZeneca (22.6%), Moderna (21.3%), Janssen/Johnson & Johnson (1.7%) and others (1.2%). The most common rheumatic disease was rheumatoid arthritis (42.3%), and 81.2% of respondents were on a DMARD. The majority (81.9%) reported communicating with clinicians about vaccination. Most (66.9%) were willing to temporarily discontinue DMARDs to improve vaccine efficacy, although many (44.3%) were concerned about rheumatic disease flares. After vaccination, the most reported patient-reported adverse events were fatigue/somnolence (33.4%), headache (27.7%), muscle/joint pains (22.8%) and fever/chills (19.9%). Rheumatic disease flares that required medication changes occurred in 4.6%. Conclusion. Among adults with systemic rheumatic disease who received COVID-19 vaccination, patient-reported adverse events were typical of those reported in the general population. Most patients were willing to temporarily discontinue DMARDs to improve vaccine efficacy. The relatively low frequency of rheumatic disease flare requiring medications was reassuring.publishersversionPeer reviewe

    Prolonged COVID-19 symptom duration in people with systemic autoimmune rheumatic diseases: results from the COVID-19 Global Rheumatology Alliance Vaccine Survey

    Get PDF
    OBJECTIVE: We investigated prolonged COVID-19 symptom duration, defined as lasting 28 days or longer, among people with systemic autoimmune rheumatic diseases (SARDs). METHODS: We analysed data from the COVID-19 Global Rheumatology Alliance Vaccine Survey (2 April 2021-15 October 2021) to identify people with SARDs reporting test-confirmed COVID-19. Participants reported COVID-19 severity and symptom duration, sociodemographics and clinical characteristics. We reported the proportion experiencing prolonged symptom duration and investigated associations with baseline characteristics using logistic regression. RESULTS: We identified 441 respondents with SARDs and COVID-19 (mean age 48.2 years, 83.7% female, 39.5% rheumatoid arthritis). The median COVID-19 symptom duration was 15 days (IQR 7, 25). Overall, 107 (24.2%) respondents had prolonged symptom duration (≥28 days); 42/429 (9.8%) reported symptoms lasting ≥90 days. Factors associated with higher odds of prolonged symptom duration included: hospitalisation for COVID-19 vs not hospitalised and mild acute symptoms (age-adjusted OR (aOR) 6.49, 95% CI 3.03 to 14.1), comorbidity count (aOR 1.11 per comorbidity, 95% CI 1.02 to 1.21) and osteoarthritis (aOR 2.11, 95% CI 1.01 to 4.27). COVID-19 onset in 2021 vs June 2020 or earlier was associated with lower odds of prolonged symptom duration (aOR 0.42, 95% CI 0.21 to 0.81). CONCLUSION: Most people with SARDs had complete symptom resolution by day 15 after COVID-19 onset. However, about 1 in 4 experienced COVID-19 symptom duration 28 days or longer; 1 in 10 experienced symptoms 90 days or longer. Future studies are needed to investigate the possible relationships between immunomodulating medications, SARD type/flare, vaccine doses and novel viral variants with prolonged COVID-19 symptoms and other postacute sequelae of COVID-19 among people with SARDs

    Obstetric Outcomes in Women with Rheumatic Disease and COVID-19 in the Context of Vaccination Status

    Get PDF
    OBJECTIVE: To describe obstetric outcomes based on COVID-19 vaccination status, in women with rheumatic and musculoskeletal diseases (RMDs) who developed COVID-19 during pregnancy. METHODS: Data regarding pregnant women entered into the COVID-19 Global Rheumatology Alliance registry from 24 March 2020-25 February 2022 were analysed. Obstetric outcomes were stratified by number of COVID-19 vaccine doses received prior to COVID-19 infection in pregnancy. Descriptive differences between groups were tested using the chi -square or Fisher's exact test. RESULTS: There were 73 pregnancies in 73 women with RMD and COVID-19. Overall, 24.7% (18) of pregnancies were ongoing, while of the 55 completed pregnancies 90.9% (50) of pregnancies resulted in livebirths. At the time of COVID-19 diagnosis, 60.3% (n = 44) of women were unvaccinated, 4.1% (n = 3) had received one vaccine dose while 35.6% (n = 26) had two or more doses. Although 83.6% (n = 61) of women required no treatment for COVID-19, 20.5% (n = 15) required hospital admission. COVID-19 resulted in delivery in 6.8% (n = 3) of unvaccinated women and 3.8% (n = 1) of fully vaccinated women. There was a greater number of preterm births (PTB) in unvaccinated women compared with fully vaccinated 29.5% (n = 13) vs 18.2%(n = 2). CONCLUSION: In this descriptive study, unvaccinated pregnant women with RMD and COVID-19 had a greater number of PTB compared with those fully vaccinated against COVID-19. Additionally, the need for COVID-19 pharmacological treatment was uncommon in pregnant women with RMD regardless of vaccination status. These results support active promotion of COVID-19 vaccination in women with RMD who are pregnant or planning a pregnancy

    Results From the Global Rheumatology Alliance Registry

    Get PDF
    Funding Information: We acknowledge financial support from the ACR and EULAR. The ACR and EULAR were not involved in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. Publisher Copyright: © 2022 The Authors. ACR Open Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.Objective: Some patients with rheumatic diseases might be at higher risk for coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS). We aimed to develop a prediction model for COVID-19 ARDS in this population and to create a simple risk score calculator for use in clinical settings. Methods: Data were derived from the COVID-19 Global Rheumatology Alliance Registry from March 24, 2020, to May 12, 2021. Seven machine learning classifiers were trained on ARDS outcomes using 83 variables obtained at COVID-19 diagnosis. Predictive performance was assessed in a US test set and was validated in patients from four countries with independent registries using area under the curve (AUC), accuracy, sensitivity, and specificity. A simple risk score calculator was developed using a regression model incorporating the most influential predictors from the best performing classifier. Results: The study included 8633 patients from 74 countries, of whom 523 (6%) had ARDS. Gradient boosting had the highest mean AUC (0.78; 95% confidence interval [CI]: 0.67-0.88) and was considered the top performing classifier. Ten predictors were identified as key risk factors and were included in a regression model. The regression model that predicted ARDS with 71% (95% CI: 61%-83%) sensitivity in the test set, and with sensitivities ranging from 61% to 80% in countries with independent registries, was used to develop the risk score calculator. Conclusion: We were able to predict ARDS with good sensitivity using information readily available at COVID-19 diagnosis. The proposed risk score calculator has the potential to guide risk stratification for treatments, such as monoclonal antibodies, that have potential to reduce COVID-19 disease progression.publishersversionepub_ahead_of_prin

    Associations of baseline use of biologic or targeted synthetic DMARDs with COVID-19 severity in rheumatoid arthritis : Results from the COVID-19 Global Rheumatology Alliance physician registry

    Get PDF
    Funding Information: Competing interests JAS is supported by the National Institute of Arthritis and Funding Information: Musculoskeletal and Skin Diseases (grant numbers K23 AR069688, R03 AR075886, L30 AR066953, P30 AR070253 and P30 AR072577), the Rheumatology Research Foundation (K Supplement Award and R Bridge Award), the Brigham Research Institute, and the R Bruce and Joan M Mickey Research Scholar Fund. JAS has received research support from Amgen and Bristol-Myers Squibb and performed consultancy for Bristol-Myers Squibb, Gilead, Inova, Janssen and Optum, unrelated to this work. ZSW reports grant support from Bristol-Myers Squibb and Principia/ Sanofi and performed consultancy for Viela Bio and MedPace, outside the submitted work. His work is supported by grants from the National Institutes of Health. MG is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers K01 AR070585 and K24 AR074534; JY). KLH reports she has received speaker’s fees from AbbVie and grant income from BMS, UCB and Pfizer, all unrelated to this study. KLH is also supported by the NIHR Manchester Biomedical Research Centre. LC has not received fees or personal grants from any laboratory, but her institute works by contract for laboratories such as, among other institutions, AbbVie Spain, Eisai, Gebro Pharma, Merck Sharp & Dohme España, Novartis Farmaceutica, Pfizer, Roche Farma, Sanofi Aventis, Astellas Pharma, Actelion Pharmaceuticals España, Grünenthal and UCB Pharma. LG reports research grants from Amgen, Galapagos, Janssen, Lilly, Pfizer, Sandoz and Sanofi; consulting fees from AbbVie, Amgen, BMS, Biogen, Celgene, Galapagos, Gilead, Janssen, Lilly, Novartis, Pfizer, Samsung Bioepis, Sanofi Aventis and UCB, all unrelated to this study. EFM reports that LPCDR received support for specific activities: grants from AbbVie, Novartis, Janssen-Cilag, Lilly Portugal, Sanofi, Grünenthal, MSD, Celgene, Medac, Pharma Kern and GAfPA; grants and non-financial support from Pfizer; and non-financial support from Grünenthal, outside the submitted work. AS reports grants from a consortium of 13 companies (among them AbbVie, BMS, Celltrion, Fresenius Kabi, Lilly, Mylan, Hexal, MSD, Pfizer, Roche, Samsung, Sanofi Aventis and UCB) supporting the German RABBIT register, and personal fees from lectures for AbbVie, MSD, Roche, BMS and Pfizer, outside the submitted work. AD-G has no disclosures relevant to this study. His work is supported by grants from the Centers for Disease Control and Prevention and the Rheumatology Research Foundation. KMD is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (T32-AR-007258) and the Rheumatology Research Foundation. NJP is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (T32-AR-007258). PD has received research support from Bristol-Myers Squibb, Chugai and Pfizer, and performed consultancy for Boehringer Ingelheim, Bristol-Myers Squibb, Lilly, Sanofi, Pfizer, Chugai, Roche and Janssen, unrelated to this work. NS is supported by the RRF Investigator Award and the American Heart Association. MFU-G reports grant support from Janssen and Pfizer. SB reports no competing interests related to this work. He reports non-branded consulting fees for AbbVie, Horizon, Novartis and Pfizer (all <10000).RGreportsnocompetinginterestsrelatedtothiswork.Outsideofthisworkshereportspersonaland/orspeakingfeesfromAbbVie,Janssen,Novartis,PfizerandCornerstones,andtravelassistancefromPfizer(all<10 000). RG reports no competing interests related to this work. Outside of this work she reports personal and/or speaking fees from AbbVie, Janssen, Novartis, Pfizer and Cornerstones, and travel assistance from Pfizer (all <10 000). JH reports no competing interests related to this work. He is supported by grants from the Rheumatology Research Foundation and the Childhood Arthritis and Rheumatology Research Alliance. He has performed consulting for Novartis, Sobi and Biogen, all unrelated to this work (<10000).JLhasreceivedresearchfundingfromPfizer,outsidethesubmittedwork.ESisaBoardMemberoftheCanadianArthritisPatientAlliance,apatientrun,volunteerbasedorganisationwhoseactivitiesarelargelysupportedbyindependentgrantsfrompharmaceuticalcompanies.PSreportsnocompetinginterestsrelatedtothiswork.HereportshonorariumfordoingsocialmediaforAmericanCollegeofRheumatologyjournals(<10 000). JL has received research funding from Pfizer, outside the submitted work. ES is a Board Member of the Canadian Arthritis Patient Alliance, a patient-run, volunteer-based organisation whose activities are largely supported by independent grants from pharmaceutical companies. PS reports no competing interests related to this work. He reports honorarium for doing social media for American College of Rheumatology journals (<10 000). PMM has received consulting/speaker’s fees from AbbVie, BMS, Celgene, Eli Lilly, Janssen, MSD, Novartis, Pfizer, Roche and UCB, all unrelated to this study (all <10000).PMMissupportedbytheNationalInstituteforHealthResearch(NIHR)UniversityCollegeLondonHospitals(UCLH)BiomedicalResearchCentre(BRC).PCRreportsnocompetinginterestsrelatedtothiswork.Outsideofthisworkhereportspersonalconsultingand/orspeakingfeesfromAbbVie,EliLilly,Janssen,Novartis,PfizerandUCB,andtravelassistancefromRoche(all<10 000). PMM is supported by the National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC). PCR reports no competing interests related to this work. Outside of this work he reports personal consulting and/or speaking fees from AbbVie, Eli Lilly, Janssen, Novartis, Pfizer and UCB, and travel assistance from Roche (all <10 000). JY reports no competing interests related to this work. Her work is supported by grants from the National Institutes of Health, Centers for Disease Control, and the Agency for Healthcare Research and Quality. She has performed consulting for Eli Lilly and AstraZeneca, unrelated to this project. Publisher Copyright: © Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.Objective To investigate baseline use of biologic or targeted synthetic (b/ts) disease-modifying antirheumatic drugs (DMARDs) and COVID-19 outcomes in rheumatoid arthritis (RA). Methods We analysed the COVID-19 Global Rheumatology Alliance physician registry (from 24 March 2020 to 12 April 2021). We investigated b/tsDMARD use for RA at the clinical onset of COVID-19 (baseline): abatacept (ABA), rituximab (RTX), Janus kinase inhibitors (JAKi), interleukin 6 inhibitors (IL-6i) or tumour necrosis factor inhibitors (TNFi, reference group). The ordinal COVID-19 severity outcome was (1) no hospitalisation, (2) hospitalisation without oxygen, (3) hospitalisation with oxygen/ventilation or (4) death. We used ordinal logistic regression to estimate the OR (odds of being one level higher on the ordinal outcome) for each drug class compared with TNFi, adjusting for potential baseline confounders. Results Of 2869 people with RA (mean age 56.7 years, 80.8% female) on b/tsDMARD at the onset of COVID-19, there were 237 on ABA, 364 on RTX, 317 on IL-6i, 563 on JAKi and 1388 on TNFi. Overall, 613 (21%) were hospitalised and 157 (5.5%) died. RTX (OR 4.15, 95% CI 3.16 to 5.44) and JAKi (OR 2.06, 95% CI 1.60 to 2.65) were each associated with worse COVID-19 severity compared with TNFi. There were no associations between ABA or IL6i and COVID-19 severity. Conclusions People with RA treated with RTX or JAKi had worse COVID-19 severity than those on TNFi. The strong association of RTX and JAKi use with poor COVID-19 outcomes highlights prioritisation of risk mitigation strategies for these people.publishersversionPeer reviewe

    Factors associated with COVID-19-related death in people with rheumatic diseases: results from the COVID-19 Global Rheumatology Alliance physician-reported registry.

    Get PDF
    OBJECTIVES: To determine factors associated with COVID-19-related death in people with rheumatic diseases. METHODS: Physician-reported registry of adults with rheumatic disease and confirmed or presumptive COVID-19 (from 24 March to 1 July 2020). The primary outcome was COVID-19-related death. Age, sex, smoking status, comorbidities, rheumatic disease diagnosis, disease activity and medications were included as covariates in multivariable logistic regression models. Analyses were further stratified according to rheumatic disease category. RESULTS: Of 3729 patients (mean age 57 years, 68% female), 390 (10.5%) died. Independent factors associated with COVID-19-related death were age (66-75 years: OR 3.00, 95% CI 2.13 to 4.22; >75 years: 6.18, 4.47 to 8.53; both vs ≤65 years), male sex (1.46, 1.11 to 1.91), hypertension combined with cardiovascular disease (1.89, 1.31 to 2.73), chronic lung disease (1.68, 1.26 to 2.25) and prednisolone-equivalent dosage >10 mg/day (1.69, 1.18 to 2.41; vs no glucocorticoid intake). Moderate/high disease activity (vs remission/low disease activity) was associated with higher odds of death (1.87, 1.27 to 2.77). Rituximab (4.04, 2.32 to 7.03), sulfasalazine (3.60, 1.66 to 7.78), immunosuppressants (azathioprine, cyclophosphamide, ciclosporin, mycophenolate or tacrolimus: 2.22, 1.43 to 3.46) and not receiving any disease-modifying anti-rheumatic drug (DMARD) (2.11, 1.48 to 3.01) were associated with higher odds of death, compared with methotrexate monotherapy. Other synthetic/biological DMARDs were not associated with COVID-19-related death. CONCLUSION: Among people with rheumatic disease, COVID-19-related death was associated with known general factors (older age, male sex and specific comorbidities) and disease-specific factors (disease activity and specific medications). The association with moderate/high disease activity highlights the importance of adequate disease control with DMARDs, preferably without increasing glucocorticoid dosages. Caution may be required with rituximab, sulfasalazine and some immunosuppressants
    corecore