118 research outputs found

    VNTR DNA Variation in Siberian Indigenous Populations

    Get PDF
    This is the published version. Copyright 1995 Wayne State University Press.The VNTR loci D7S104, D11S129, D18S17, D20S15, and D21S112 in three indigenous Siberian populations were analyzed to determine the populations' genetic structure. Using the Kolmogorov- Smirnov test, we found that the Siberian indigenous populations of Surinda and Sulamai are separated at the D1 IS 129 locus (p < 0.05). However, the population of Poligus is genetically homogeneous compared with the villages of Sulamai and Surinda. Principal component plots for the sets of VNTR loci cluster the Siberian groups together, reflecting the homogeneity of these populations. An analysis of mean per locus heterozygosity versus the distance from the centroid of distribution suggests gene flow into Sulamai but little genetic exchange with Surinda and Poligus. Ultimately, the VNTR data reflect the genetic distinctiveness of the Kets and the Evenki

    Ancient human genomes suggest three ancestral populations for present-day Europeans

    Get PDF
    We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes1,2,3,4 with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians3, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations’ deep relationships and show that early European farmers had ∼44% ancestry from a ‘basal Eurasian’ population that split before the diversification of other non-African lineages.Instituto Multidisciplinario de Biología Celula

    Reconstructing Native American Population History

    Get PDF
    The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved1–5. One contentious issue is whether the settlement occurred via a single6–8 or multiple streams of migration from Siberia9–15. The pattern of dispersals within the Americas is also poorly understood. To address these questions at higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. We show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call “First American”. However, speakers of Eskimo-Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan-speakers on both sides of the Panama Isthmus, who have ancestry from both North and South America

    Adaptations to Climate-Mediated Selective Pressures in Humans

    Get PDF
    Humans inhabit a remarkably diverse range of environments, and adaptation through natural selection has likely played a central role in the capacity to survive and thrive in extreme climates. Unlike numerous studies that used only population genetic data to search for evidence of selection, here we scan the human genome for selection signals by identifying the SNPs with the strongest correlations between allele frequencies and climate across 61 worldwide populations. We find a striking enrichment of genic and nonsynonymous SNPs relative to non-genic SNPs among those that are strongly correlated with these climate variables. Among the most extreme signals, several overlap with those from GWAS, including SNPs associated with pigmentation and autoimmune diseases. Further, we find an enrichment of strong signals in gene sets related to UV radiation, infection and immunity, and cancer. Our results imply that adaptations to climate shaped the spatial distribution of variation in humans
    corecore