37 research outputs found

    Lifelong Fitness in Ambulatory Children and Adolescents with Cerebral Palsy I: Key Ingredients for Bone and Muscle Health

    Get PDF
    Physical activity of a sufficient amount and intensity is essential to health and the prevention of a sedentary lifestyle in all children as they transition into adolescence and adulthood. While fostering a fit lifestyle in all children can be challenging, it may be even more so for those with cerebral palsy (CP). Evidence suggests that bone and muscle health can improve with targeted exercise programs for children with CP. Yet, it is not clear how musculoskeletal improvements are sustained into adulthood. In this perspective, we introduce key ingredients and guidelines to promote bone and muscle health in ambulatory children with CP (GMFCS I–III), which could lay the foundation for sustained fitness and musculoskeletal health as they transition from childhood to adolescence and adulthood. First, one must consider crucial characteristics of the skeletal and muscular systems as well as key factors to augment bone and muscle integrity. Second, to build a better foundation, we must consider critical time periods and essential ingredients for programming. Finally, to foster the sustainability of a fit lifestyle, we must encourage commitment and self-initiated action while ensuring the attainment of skill acquisition and function. Thus, the overall objective of this perspective paper is to guide exercise programming and community implementation to truly alter lifelong fitness in persons with CP

    Activity-based therapies for repair of the corticospinal system injured during development

    Get PDF
    This review presents the mechanistic underpinnings of corticospinal tract (CST) development, derived from animal models, and applies what has been learned to inform neural activity-based strategies for CST repair. We first discuss that, in normal development, early bilateral CST projections are later refined into a dense crossed CST projection, with maintenance of sparse ipsilateral projections. Using a novel mouse genetic model, we show that promoting the ipsilateral CST projection produces mirror movements, common in hemiplegic cerebral palsy (CP), suggesting that ipsilateral CST projections become maladaptive when they become abnormally dense and strong. We next discuss how animal studies support a developmental “competition rule” whereby more active/used connections are more competitive and overtake less active/used connections. Based on this rule, after unilateral injury the damaged CST is less able to compete for spinal synaptic connections than the uninjured CST. This can lead to a progressive loss of the injured hemisphere’s contralateral projection and a reactive gain of the undamaged hemisphere’s ipsilateral CST. Knowledge of the pathophysiology of the developing CST after injury informs interventional strategies. In an animal model of hemiplegic CP, promoting injured system activity or decreasing the uninjured system’s activity immediately after the period of a developmental injury both increase the synaptic competitiveness of the damaged system, contributing to significant CST repair and motor recovery. However, delayed intervention, despite significant CST repair, fails to restore skilled movements, stressing the need to consider repair strategies for other neural systems, including the rubrospinal and spinal interneuronal systems. Our interventional approaches harness neural activity-dependent processes and are highly effective in restoring function. These approaches are minimally invasive and are poised for translation to the human

    Inter-Limb Muscle Synergies and Kinematic Analysis of Hands-and-Knees Crawling in Typically Developing Infants and Infants With Developmental Delay

    Get PDF
    Hands-and-knees-crawling is an important motor developmental milestone and a unique window into the development of central nervous system (CNS). Mobility during crawling is regularly used in clinical assessments to identify delays in motor development. However, possible contribution from CNS impairments to motor development delay is still unknown. The aim of this study was to quantify and compare inter-limb muscle synergy and kinematics during crawling among infants at a similar developmental age, however, clinically determined to be typically developing (TD, N = 20) infants, infants at risk of developmental delay (ARDD, N = 33), or infants with confirmed developmental delay (CDD, N = 13). We hypothesized that even though all of the groups are at a similar developmental age, there would be differences in kinematic measures during crawling, and such differences would be associated with CNS impairment as measured by electromyography (EMG) features. Surface EMG of eight arm and leg muscles and the corresponding joint kinematic data were collected while participants crawled on hands and knees at their self-selected velocity. Temporal-spatial parameters and normalized Jerk-Cost (JC) function (i.e., smoothness of movement) were computed from the measured kinematics. The inter-limb muscle synergy and the number of co-activating muscles per synergy were measured using EMGs. We found that the infants with CDD demonstrated higher normalized JC values (less movement smoothness), fewer muscle synergies, and more co-activating muscles per synergy, compared to infants with TD (p < 0.05) and ARDD (p < 0.05). Furthermore, the normalized JC values were correlated (p < 0.05) with the number of co-activation muscles per synergy. Our results suggest a constrained neuromuscular control strategy due to neurological injury in infants with CDD, and such constrain may contribute to the reduced movement smoothness in infant crawling

    Motivators and barriers to research participation for individuals with cerebral palsy and their families.

    No full text
    Objective(s)Our objective was to investigate the motivators and barriers associated with the individual or family decision to participate in cerebral palsy research. Based on this information, we offer suggestions to increase the likelihood of participation in future CP studies.MethodsA digital survey was administered to stakeholders affected by cerebral palsy across the US. Our analysis focused on variables related to personal interests, travel, and study-specific elements. Statistical tests investigated the effects of responder type, cerebral palsy type, and Gross Motor Function Classification System level on travel and study-specific element variables. Recommendations were informed by responses reflecting the majority of respondents.ResultsBased on 233 responses, we found that respondents highly valued research participation (on average 88.2/100) and compensation (on average 62.3/100). Motivators included the potential for direct benefit (62.2%) and helping others (53.4%). The primary barriers to participation were schedule limitations (48.9%) and travel logistics (32.6%). Schedule limitations were especially pertinent to caregivers, while individuals with more severe cerebral palsy diagnoses reported the necessity of additional items to comfortably travel.ConclusionsOverall, we encourage the involvement of stakeholders affected by cerebral palsy in the research process. Researchers should consider offering flexible study times, accommodating locations, and compensation for time and travel expenses. We recommend a minimum compensation of $15/hour and a maximum time commitment of 4 hours/day to respect participants' time and increase likelihood of research participation. Future studies should track how attitudes toward research change with time and experience
    corecore