607 research outputs found
Linear Confinement for Mesons and Nucleons in AdS/QCD
By using a new parametrization of the dilaton field and including a cubic
term in the bulk scalar potential, we realize linear confinement in both meson
and nucleon sectors within the framework of soft-wall AdS/QCD. At the same time
this model also correctly incorporate chiral symmetry breaking. We compare our
resulting mass spectra with experimental data and find good agreement between
them.Comment: 14 pages, published version in JHE
The thoughtful self
The relationship between a concept in the external world (e.g., the self), and its representation in cognition
U-DADA:Unsupervised Deep Action Domain Adaptation
The problem of domain adaptation has been extensively studied for object classification task. However, this problem has not been as well studied for recognizing actions. While, object recognition is well understood, the diverse variety of videos in action recognition make the task of addressing domain shift to be more challenging. We address this problem by proposing a new novel adaptation technique that we term as unsupervised deep action domain adaptation (U-DADA). The main concept that we propose is that of explicitly modeling density based adaptation and using them while adapting domains for recognizing actions. We show that these techniques work well both for domain adaptation through adversarial learning to obtain invariant features or explicitly reducing the domain shift between distributions. The method is shown to work well using existing benchmark datasets such as UCF50, UCF101, HMDB51 and Olympic Sports. As a pioneering effort in the area of deep action adaptation, we are presenting several benchmark results and techniques that could serve as baselines to guide future research in this area.</p
Intertwining personal and reward relevance: evidence from the drift-diffusion model.
In their seminal paper 'Is our self nothing but reward', Northoff and Hayes (Biol Psychiatry 69(11):1019-1025, Northoff, Hayes, Biological Psychiatry 69(11):1019-1025, 2011) proposed three models of the relationship between self and reward and opened a continuing debate about how these different fields can be linked. To date, none of the proposed models received strong empirical support. The present study tested common and distinct effects of personal relevance and reward values by de-componenting different stages of perceptual decision making using a drift-diffusion approach. We employed a recently developed associative matching paradigm where participants (N = 40) formed mental associations between five geometric shapes and five labels referring personal relevance in the personal task, or five shape-label pairings with different reward values in the reward task and then performed a matching task by indicating whether a displayed shape-label pairing was correct or incorrect. We found that common effects of personal relevance and monetary reward were manifested in the facilitation of behavioural performance for high personal relevance and high reward value as socially important signals. The differential effects between personal and monetary relevance reflected non-decisional time in a perceptual decision process, and task-specific prioritization of stimuli. Our findings support the parallel processing model (Northoff & Hayes, Biol Psychiatry 69(11):1019-1025, Northoff, Hayes, Biological Psychiatry 69(11):1019-1025, 2011) and suggest that self-specific processing occurs in parallel with high reward processing. Limitations and further directions are discussed
Wide-Scale Analysis of Human Functional Transcription Factor Binding Reveals a Strong Bias towards the Transcription Start Site
We introduce a novel method to screen the promoters of a set of genes with
shared biological function, against a precompiled library of motifs, and find
those motifs which are statistically over-represented in the gene set. The gene
sets were obtained from the functional Gene Ontology (GO) classification; for
each set and motif we optimized the sequence similarity score threshold,
independently for every location window (measured with respect to the TSS),
taking into account the location dependent nucleotide heterogeneity along the
promoters of the target genes. We performed a high throughput analysis,
searching the promoters (from 200bp downstream to 1000bp upstream the TSS), of
more than 8000 human and 23,000 mouse genes, for 134 functional Gene Ontology
classes and for 412 known DNA motifs. When combined with binding site and
location conservation between human and mouse, the method identifies with high
probability functional binding sites that regulate groups of biologically
related genes. We found many location-sensitive functional binding events and
showed that they clustered close to the TSS. Our method and findings were put
to several experimental tests. By allowing a "flexible" threshold and combining
our functional class and location specific search method with conservation
between human and mouse, we are able to identify reliably functional TF binding
sites. This is an essential step towards constructing regulatory networks and
elucidating the design principles that govern transcriptional regulation of
expression. The promoter region proximal to the TSS appears to be of central
importance for regulation of transcription in human and mouse, just as it is in
bacteria and yeast.Comment: 31 pages, including Supplementary Information and figure
Electrospun ZnO Nanowires as Gas Sensors for Ethanol Detection
ZnO nanowires were produced using an electrospinning method and used in gas sensors for the detection of ethanol at 220 °C. This electrospinning technique allows the direct placement of ZnO nanowires during their synthesis to bridge the sensor electrodes. An excellent sensitivity of nearly 90% was obtained at a low ethanol concentration of 10 ppm, and the rest obtained at higher ethanol concentrations, up to 600 ppm, all equal to or greater than 90%
Spatial Functional Characteristics of East Asian Patients with Occult Macular Dystrophy (Miyake disease); EAOMD Report No.2
PURPOSE: To describe the functional phenotypic features of East Asian patients with RP1L1-associated occult macular dystrophy (i.e., Miyake disease). DESIGN: An international multi-center retrospective cohort study. METHODS: Twenty-eight participants (53 eyes) with Miyake disease were enrolled at three centres: in Japan, China, and Korea. Ophthalmological examinations including spectral-domain optic coherence tomography (SD-OCT) and multifocal electroretinogram (mfERG) were performed. Patients were classified into three functional groups based on mfERG: Group 1, paracentral dysfunction with relatively preserved central/peripheral function; Group 2, homogeneous central dysfunction with preserved peripheral function; and Group 3, widespread dysfunction over the recorded area. Three functional phenotypes were compared in clinical parameters and SD-OCT morphological classification (severe phenotype, blurred/flat ellipsoid zone and absence of the interdigitation zone; mild phenotype, preserved ellipsoid zone). RESULTS: There were eight eyes in Group 1, 40 eyes in Group 2, and five eyes in Group 3. The patients in Group 1 showed significantly later onset (P=.005) and shorter disease duration (P=.002), compared with those in Group 2. All eight eyes in Group 1 showed the mild morphological phenotype, while 43/45 eyes in Groups 2 and 3 presented the severe phenotype, which identified a significant association between the functional grouping and the morphological classification (P<.001). CONCLUSIONS: A spectrum of functional phenotypes of Miyake disease was first documented with identifying three functional subtypes. Patients with paracentral dysfunction had the mildest phenotype, and those with homogeneous central or widespread dysfunction showed overlapping clinical findings with severe photoreceptor changes, suggesting various extents of visual impairment
A Self-Reference False Memory Effect in the DRM Paradigm: Evidence from Eastern and Western Samples
It is well established that processing information in relation to oneself (i.e., selfreferencing) leads to better memory for that information than processing that same information in relation to others (i.e., other-referencing). However, it is unknown whether self-referencing also leads to more false memories than other-referencing. In the current two experiments with European and East Asian samples, we presented participants the Deese-Roediger/McDermott (DRM) lists together with their own name or other people’s name (i.e., “Trump” in Experiment 1 and “Li Ming” in Experiment 2). We found consistent results across the two experiments; that is, in the self-reference condition, participants had higher true and false memory rates compared to those in the other-reference condition. Moreover, we found that selfreferencing did not exhibit superior mnemonic advantage in terms of net accuracy compared to other-referencing and neutral conditions. These findings are discussed in terms of theoretical frameworks such as spreading activation theories and the fuzzytrace theory. We propose that our results reflect the adaptive nature of memory in the sense that cognitive processes that increase mnemonic efficiency may also increase susceptibility to associative false memories
Unique reporter-based sensor platforms to monitor signalling in cells
Introduction: In recent years much progress has been made in the development of tools for systems biology to study the levels of mRNA and protein, and their interactions within cells. However, few multiplexed methodologies are available to study cell signalling directly at the transcription factor level.
<p/>Methods: Here we describe a sensitive, plasmid-based RNA reporter methodology to study transcription factor activation in mammalian cells, and apply this technology to profiling 60 transcription factors in parallel. The methodology uses two robust and easily accessible detection platforms; quantitative real-time PCR for quantitative analysis and DNA microarrays for parallel, higher throughput analysis.
<p/>Findings: We test the specificity of the detection platforms with ten inducers and independently validate the transcription factor activation.
<p/>Conclusions: We report a methodology for the multiplexed study of transcription factor activation in mammalian cells that is direct and not theoretically limited by the number of available reporters
Large tunable valley splitting in edge-free graphene quantum dots on boron nitride
Coherent manipulation of binary degrees of freedom is at the heart of modern
quantum technologies. Graphene offers two binary degrees: the electron spin and
the valley. Efficient spin control has been demonstrated in many solid state
systems, while exploitation of the valley has only recently been started, yet
without control on the single electron level. Here, we show that van-der Waals
stacking of graphene onto hexagonal boron nitride offers a natural platform for
valley control. We use a graphene quantum dot induced by the tip of a scanning
tunneling microscope and demonstrate valley splitting that is tunable from -5
to +10 meV (including valley inversion) by sub-10-nm displacements of the
quantum dot position. This boosts the range of controlled valley splitting by
about one order of magnitude. The tunable inversion of spin and valley states
should enable coherent superposition of these degrees of freedom as a first
step towards graphene-based qubits
- …