200 research outputs found

    Electrogenic transport and K(+) ion channel expression by the human endolymphatic sac epithelium.

    Get PDF
    The endolymphatic sac (ES) is a cystic organ that is a part of the inner ear and is connected to the cochlea and vestibule. The ES is thought to be involved in inner ear ion homeostasis and fluid volume regulation for the maintenance of hearing and balance function. Many ion channels, transporters, and exchangers have been identified in the ES luminal epithelium, mainly in animal studies, but there has been no functional study investigating ion transport using human ES tissue. We designed the first functional experiments on electrogenic transport in human ES and investigated the contribution of K(+) channels in the electrogenic transport, which has been rarely identified, even in animal studies, using electrophysiological/pharmacological and molecular biological methods. As a result, we identified functional and molecular evidence for the essential participation of K(+) channels in the electrogenic transport of human ES epithelium. The identified K(+) channels involved in the electrogenic transport were KCNN2, KCNJ14, KCNK2, and KCNK6, and the K(+) transports via those channels are thought to play an important role in the maintenance of the unique ionic milieu of the inner ear fluid

    Fiber-Optic Imaging Probe Developed for Space Used to Detect Diabetes Through the Eye

    Get PDF
    Approximately 16 million Americans have diabetes mellitus, which can severely impair eyesight by causing cataracts, diabetic retinopathy, and glaucoma. Cataracts are 1.6 times more common in people with diabetes than in those without diabetes, and cataract extraction is the only surgical treatment. In many cases, diabetes-related ocular pathologies go undiagnosed until visual function is compromised. This ongoing pilot project seeks to study the progression of diabetes in a unique animal model by monitoring changes in the lens with a safe, sensitive, dynamic light-scattering probe. Dynamic light scattering (DLS), has the potential to diagnose cataracts at the molecular level. Recently, a new DLS fiber-optic probe was developed at the NASA Glenn Research Center at Lewis Field for noncontact, accurate, and extremely sensitive particle-sizing measurements in fluid dispersions and suspensions (ref. 1). This compact, portable, and rugged probe is free of optical alignment, offers point-and-shoot operation for various online field applications and challenging environments, and yet is extremely flexible in regards to sample container sizes, materials, and shapes. No external vibration isolation and no index matching are required. It can measure particles as small as 1 nm and as large as few micrometers in a wide concentration range from very dilute (waterlike) dispersions to very turbid (milklike) suspensions. It is safe and fast to use, since it only requires very low laser power (10 nW to 3 mW) with very short data acquisition times (2 to 10 sec)

    Association of balance impairment with risk of incident cardiovascular diseases among older adults

    Get PDF
    Background Rapid decline in balance is a hallmark of aging, elevating the risk of falls and other age-related geriatric illnesses among older adults. Objective Our aim was to assess whether impairment in balance function is associated with the risk of incident CVD in older adults. Design Retrospective cohort analysis. Participants A total of 129,024 participants who had undergone health screening between 2002 and 2009 were derived from the National Health Insurance Service-Senior cohort. Main measures Balance impairment was evaluated using the open-eyes one-leg standing (OLS) test. The association between balance impairment and incident CVD was analyzed using the Cox proportional hazards regression model. All participants were followed up with until either the date of the first incident of CVD, death, or 31 December 2019. Key results Those with abnormal balance function (< 10 s in OLS test) had a higher risk of CVD (adjusted hazard ratio [aHR] 1.23, CI 1.16–1.31). The association was significant in both the obese and the non-obese, but it seemed to be more pronounced in the latter. Results were supported by sensitivity analyses that did not include cases of CVD development in the first 1, 2, or 3 years and that used a different criterion to define balance dysfunction (< 9 s in OLS test). Conclusions Older adults with balance impairment were found to have an increased risk of incident CVD. Patients with impaired balance function may be a high-risk population who require preventive managements against CVD

    Targeting small molecule drugs to T cells with antibody-directed cell-penetrating gold nanoparticles

    Get PDF
    We sought to develop a nanoparticle vehicle that could efficiently deliver small molecule drugs to target lymphocyte populations. The synthesized amphiphilic organic ligand-protected gold nanoparticles (amph-NPs) were capable of sequestering large payloads of small molecule drugs within hydrophobic pockets of their ligand shells. These particles exhibit membrane-penetrating activity in mammalian cells, and thus enhanced uptake of a small molecule TGF-β inhibitor in T cells in cell culture. By conjugating amph-NPs with targeting antibodies or camelid-derived nanobodies, the particles' cell-penetrating properties could be temporarily suppressed, allowing targeted uptake in specific lymphocyte subpopulations. Degradation of the protein targeting moieties following particle endocytosis allowed the NPs to recover their cell-penetrating activity in situ to enter the cytoplasm of T cells. In vivo, targeted amph-NPs showed 40-fold enhanced uptake in CD8+ T cells relative to untargeted particles, and delivery of TGF-β inhibitor-loaded particles to T cells enhanced their cytokine polyfunctionality in a cancer vaccine model. Thus, this system provides a facile approach to concentrate small molecule compounds in target lymphocyte populations of interest for immunotherapy in cancer and other diseases.Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-13-D-0001)Melanoma Research AllianceNational Cancer Institute (U.S.) (David H. Koch Institute for Integrative Cancer Research at MIT. (Support (Core) Grant P30-CA14051)National Institutes of Health (U.S.) (Grant CA174795)National Institutes of Health (U.S.) (Grant CA172164)Horizon 2020 Framework Programme (European Commission). FutureNanoNeeds Projec

    Rpl3l gene deletion in mice reduces heart weight over time

    Get PDF
    Introduction: The ribosomal protein L3-like (RPL3L) is a heart and skeletal muscle-specific ribosomal protein and paralogue of the more ubiquitously expressed RPL3 protein. Mutations in the human RPL3L gene are linked to childhood cardiomyopathy and age-related atrial fibrillation, yet the function of RPL3L in the mammalian heart remains unknown.Methods and Results: Here, we observed that mouse cardiac ventricles express RPL3 at birth, where it is gradually replaced by RPL3L in adulthood but re-expressed with induction of hypertrophy in adults. Rpl3l gene-deleted mice were generated to examine the role of this gene in the heart, although Rpl3l−/− mice showed no overt changes in cardiac structure or function at baseline or after pressure overload hypertrophy, likely because RPL3 expression was upregulated and maintained in adulthood. mRNA expression analysis and ribosome profiling failed to show differences between the hearts of Rpl3l null and wild type mice in adulthood. Moreover, ribosomes lacking RPL3L showed no differences in localization within cardiomyocytes compared to wild type controls, nor was there an alteration in cardiac tissue ultrastructure or mitochondrial function in adult Rpl3l−/− mice. Similarly, overexpression of either RPL3 or RPL3L with adeno-associated virus −9 in the hearts of mice did not cause discernable pathology. However, by 18 months of age Rpl3l−/− null mice had significantly smaller hearts compared to wild type littermates.Conclusion: Thus, deletion of Rpl3l forces maintenance of RPL3 expression within the heart that appears to fully compensate for the loss of RPL3L, although older Rpl3l−/− mice showed a mild but significant reduction in heart weight

    AcrB Trimer Stability and Efflux Activity, Insight from Mutagenesis Studies

    Get PDF
    The multidrug transporter AcrB in Escherichia coli exists and functions as a homo-trimer. The assembly process of obligate membrane protein oligomers, including AcrB, remains poorly understood. In a previous study, we have shown that individual AcrB subunit is capable of folding independently, suggesting that trimerization of AcrB follows a three-stage pathway in which monomers first fold, and then assemble. Here we destabilized the AcrB trimer through mutating a single Pro (P223) in the protruding loop of AcrB, which drastically reduced the protein activity. We replaced P223 separately with five residues, including Ala, Val, Tyr, Asn, and Gly, and found that AcrBP223G was the least active. Detailed characterization of AcrBP223G revealed that the protein existed as a well-folded monomer after purification, but formed a trimer in vivo. The function of the mutant could be partly restored through strengthening the stability of the trimer using an inter-subunit disulfide bond. Our results also suggested that the protruding loop is well structured during AcrB assembly with P223 served as a “wedge” close to the tip to stabilize the AcrB trimer structure. When this wedge is disrupted, the stability of the trimer is reduced, accompanied by a decrease of drug efflux activity

    Gene Expression Profiling in the Type 1 Diabetes Rat Diaphragm

    Get PDF
    BACKGROUND:Respiratory muscle contractile performance is impaired by diabetes, mechanisms of which included altered carbohydrate and lipid metabolism, oxidative stress and changes in membrane electrophysiology. The present study examined to what extent these cellular perturbations involve changes in gene expression. METHODOLOGY/PRINCIPAL FINDINGS:Diaphragm muscle from streptozotocin-diabetic rats was analyzed with Affymetrix gene expression arrays. Diaphragm from diabetic rats had 105 genes with at least +/-2-fold significantly changed expression (55 increased, 50 decreased), and these were assigned to gene ontology groups based on over-representation analysis using DAVID software. There was increased expression of genes involved in palmitoyl-CoA hydrolase activity (a component of lipid metabolism) (P = 0.037, n = 2 genes, fold change 4.2 to 27.5) and reduced expression of genes related to carbohydrate metabolism (P = 0.000061, n = 8 genes, fold change -2.0 to -8.5). Other gene ontology groups among upregulated genes were protein ubiquitination (P = 0.0053, n = 4, fold change 2.2 to 3.4), oxidoreductase activity (P = 0.024, n = 8, fold change 2.1 to 6.0), and morphogenesis (P = 0.012, n = 10, fold change 2.1 to 4.3). Other downregulated gene groups were extracellular region (including extracellular matrix and collagen) (P = 0.00032, n = 13, fold change -2.2 to -3.7) and organogenesis (P = 0.032, n = 7, fold change -2.1 to -3.7). Real-time PCR confirmed the directionality of changes in gene expression for 30 of 31 genes tested. CONCLUSIONS/SIGNIFICANCE:These data indicate that in diaphragm muscle type 1 diabetes increases expression of genes involved in lipid energetics, oxidative stress and protein ubiquitination, decreases expression of genes involved in carbohydrate metabolism, and has little effect on expression of ion channel genes. Reciprocal changes in expression of genes involved in carbohydrate and lipid metabolism may change the availability of energetic substrates and thereby directly modulate fatigue resistance, an important issue for a muscle like the diaphragm which needs to contract without rest for the entire lifetime of the organism

    The swan genome and transcriptome, its not all black and white

    Get PDF
    BACKGROUND: The Australian black swan (Cygnus atratus) is an iconic species with contrasting plumage to that of the closely related northern hemisphere white swans. The relative geographic isolation of the black swan may have resulted in a limited immune repertoire and increased susceptibility to infectious diseases, notably infectious diseases from which Australia has been largely shielded. Unlike mallard ducks and the mute swan (Cygnus olor), the black swan is extremely sensitive to highly pathogenic avian influenza. Understanding this susceptibility has been impaired by the absence of any available swan genome and transcriptome information. RESULTS: Here, we generate the first chromosome-length black and mute swan genomes annotated with transcriptome data, all using long-read based pipelines generated for vertebrate species. We use these genomes and transcriptomes to show that unlike other wild waterfowl, black swans lack an expanded immune gene repertoire, lack a key viral pattern-recognition receptor in endothelial cells and mount a poorly controlled inflammatory response to highly pathogenic avian influenza. We also implicate genetic differences in SLC45A2 gene in the iconic plumage of the black swan. CONCLUSION: Together, these data suggest that the immune system of the black swan is such that should any avian viral infection become established in its native habitat, the black swan would be in a significant peril. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-022-02838-0

    Novel App knock-in mouse model shows key features of amyloid pathology and reveals profound metabolic dysregulation of microglia.

    Get PDF
    BACKGROUND: Genetic mutations underlying familial Alzheimer\u27s disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain. METHODS: We engineered a novel App knock-in mouse model (App RESULTS: Leveraging multi-omics approaches, we discovered profound alteration of diverse lipids and metabolites as well as an exacerbated disease-associated transcriptomic response in microglia with high intracellular Aβ content. The App DISCUSSION: Our findings demonstrate that fibrillar Aβ in microglia is associated with lipid dyshomeostasis consistent with lysosomal dysfunction and foam cell phenotypes as well as profound immuno-metabolic perturbations, opening new avenues to further investigate metabolic pathways at play in microglia responding to AD-relevant pathogenesis. The in-depth characterization of pathological hallmarks of AD in this novel and open-access mouse model should serve as a resource for the scientific community to investigate disease-relevant biology

    Variation in the ICAM1-ICAM4-ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries

    Get PDF
    Objective: Systemic lupus erythematosus (SLE; OMIM 152700) is a chronic autoimmune disease for which the aetiology includes genetic and environmental factors. ITGAM, integrin ?M(complement component 3 receptor 3 subunit) encoding a ligand for intracellular adhesion molecule (ICAM) proteins, is an established SLE susceptibility locus. This study aimed to evaluate the independent and joint effects of genetic variations in the genes that encode ITGAM and ICAM. Methods: The authors examined several markers in the ICAM1-ICAM4-ICAM5 locus on chromosome 19p13 and the single ITGAM polymorphism (rs1143679) using a large-scale case-control study of 17 481 unrelated participants from four ancestry populations. The singlemarker association and gene-gene interaction were analysed for each ancestry, and a meta-analysis across the four ancestries was performed. Results: The A-allele of ICAM1-ICAM4-ICAM5 rs3093030, associated with elevated plasma levels of soluble ICAM1, and the A-allele of ITGAM rs1143679 showed the strongest association with increased SLE susceptibility in each of the ancestry populations and the trans-ancestry meta-analysis (ORmeta=1.16, 95% CI 1.11 to 1.22; p=4.88 × 10-10 and ORmeta=1.67, 95% CI 1.55 to 1.79; p=3.32 × 10-46, respectively). The effect of the ICAM single-nucleotide polymorphisms (SNPs) was independent of the effect of the ITGAM SNP rs1143679, and carriers of both ICAM rs3093030-AA and ITGAM rs1143679-AA had an OR of 4.08 compared with those with no risk allele in either SNP (95% CI 2.09 to 7.98; p=3.91 × 10-5). Conclusion: These findings are the first to suggest that an ICAM-integrin-mediated pathway contributes to susceptibility to SLE
    corecore