39 research outputs found

    A searchable database and mass spectral comparison tool for the Aerosol Mass Spectrometer (AMS) and the Aerosol Chemical Speciation Monitor (ACSM)

    Get PDF
    The Aerodyne Aerosol Mass Spectrometer (AMS) and Aerosol Chemical Speciation Monitor (ACSM) are the most widely applied tools for in situ chemical analysis of the non-refractory bulk composition of fine atmospheric particles. The mass spectra (MS) of many AMS and ACSM observations from field and laboratory studies have been reported in peer-reviewed literature and many of these MS have been submitted to an open-access website. With the increased reporting of such datasets, the database interface requires revisions to meet new demands and applications. One major limitation of the web-based database is the inability to automatically search the database and compare previous MS with the researcher's own data. In this study, a searchable database tool for the AMS and ACSM mass spectral dataset was built to improve the efficiency of data analysis using Igor Pro, consistent with existing AMS and ACSM software. The database tool incorporates the published MS and sample information uploaded on the website. This tool allows the comparison of a target mass spectrum with the reference MS in the database, calculating cosine similarity, and provides a range of MS comparison plots, reweighting, and mass spectrum filtering options. The aim of this work is to help AMS and ACSM users efficiently analyze their own data for possible source or atmospheric processing features by comparison to previous studies, enhancing information gained from past and current global research on atmospheric aerosol.</p

    Nighttime removal of NOx in the summer marine boundary layer

    Get PDF
    The nitrate radical, NO3, and dinitrogen pentoxide, N2O5, are two important components of nitrogen oxides that occur predominantly at night in the lower troposphere. Because a large fraction of NO2 reacts to form NO3 and N2O5 during the course of a night, their fate is an important determining factor to the overall fate of NOx (=NO and NO2). As a comprehensive test of nocturnal nitrogen oxide chemistry, concentrations of O3, NO, NO2, NO3, N2O5, HNO3 and a host of other relevant compounds, aerosol abundance and composition, and meteorological conditions were measured in the marine boundary layer from the NOAA research vessel Ronald H. Brown off the East Coast of the United States as part of the New England Air Quality Study (NEAQS) during the summer of 2002. The results confirm the prominent role of NO3 and N2O5 in converting NOx to HNO3 at night with an efficiency on par with daytime photochemical conversion. The findings demonstrate the large role of nighttime chemistry in determining the NOx budget and consequent production of ozone. INDEX TERMS: 0322 Atmospheric Composition and Structure: Constituent sources and sinks; 0345 Atmospheric Composition and Structure: Pollution—urban and regional (0305); 0365 Atmospheric Composition and Structure: Troposphere—composition and chemistry. Citation: Brown, S. S., et al. (2004), Nighttime removal of NOx in the summer marine boundary layer, Geophys. Res. Lett., 31, L07108, doi:10.1029/2004GL01941

    Characterization of trace metals on soot aerosol particles with the SP-AMS : detection and quantification

    Get PDF
    A method to detect and quantify mass concentrations of trace metals on soot particles by the Aerodyne soot-particle aerosol mass spectrometer (SP-AMS) was developed and evaluated in this study. The generation of monodisperse Regal black (RB) test particles with trace amounts of 13 different metals (Na, Al, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr and Ba) allowed for the determination of the relative ionization efficiency of each metal relative to black carbon (RIEmeas). The observed RIEmeas/RIEtheory values were larger than unity for Na, Rb, Ca, Sr and Ba due to thermal surface ionization (TSI) on the surface of the laser-heated RB particles. Values closer to unity were obtained for the transition metals Zn, Cu, V and Cr. Mn, Fe, and Ni presented the lowest RIEmeas/RIEtheory ratios and highest deviation from unity. The latter discrepancy is unexplained; however it may be related to problems with our calibration method and/or the formation of metal complexes that were not successfully quantified. The response of the metals to the laser power was investigated and the results indicated that a minimum pump laser current of 0.6 A was needed in order to vaporize the metals and the refractory black carbon (rBC). Isotopic patterns of metals were resolved from high-resolution mass spectra, and the mass-weighted size distributions for each individual metal ion were obtained using the high-resolution particle time-of-flight (HR-PToF) method. The RIEmeas values obtained in this study were applied to the data of emission measurements in a heavy-fuel-oil-fired heating station. Emission measurements revealed a large number of trace metals, including evidence for metal oxides and metallic salts, such as vanadium sulfate, calcium sulfate, iron sulfate and barium sulfate, which were identified in the SP-AMS high-resolution mass spectra. SP-AMS measurements of Ba, Fe, and V agreed with ICP-MS analyzed filter samples within a factor of 2 when emitted rBC mass loadings were elevated.Peer reviewe

    Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign

    Get PDF
    The concentration, size, and composition of non-refractory submicron aerosol (NR-PM&lt;sub&gt;1&lt;/sub&gt;) was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS. During the campaign the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA) species dominate the NR-PM&lt;sub&gt;1&lt;/sub&gt; mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA) and biomass burning (BB) are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 μg m&lt;sup&gt;&amp;minus;3&lt;/sup&gt; (STP) ppm&lt;sup&gt;&amp;minus;1&lt;/sup&gt;. This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006) and Kleinman et al. (2008). The stability of the OA/CO while O/C increases with photochemical age implies a net loss of carbon from the OA. BB OA is marked by signals at &lt;i&gt;m/z&lt;/i&gt; 60 and 73, and also by a signal enhancement at large &lt;i&gt;m/z&lt;/i&gt; indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major regional source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city likely due to evaporation. BB does not appear to be a strong source of nitrate despite its high emissions of nitrogen oxides, presumably due to low ammonia emissions. NR-chloride often correlates with HCN indicating a fire source, although other sources likely contribute as well. This is the first aircraft study of the regional evolution of aerosol chemistry from a tropical megacity

    Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 1: Fine particle composition and organic source apportionment

    Get PDF
    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and complementary instrumentation. Mass concentrations, diurnal cycles, and size distributions of inorganic and organic species are similar to results from the CENICA supersite in April 2003 with organic aerosol (OA) comprising about half of the fine PM mass. Positive Matrix Factorization (PMF) analysis of the high resolution OA spectra identified three major components: chemically-reduced urban primary emissions (hydrocarbon-like OA, HOA), oxygenated OA (OOA, mostly secondary OA or SOA), and biomass burning OA (BBOA) that correlates with levoglucosan and acetonitrile. BBOA includes several very large plumes from regional fires and likely also some refuse burning. A fourth OA component is a small local nitrogen-containing reduced OA component (LOA) which accounts for 9% of the OA mass but one third of the organic nitrogen, likely as amines. OOA accounts for almost half of the OA on average, consistent with previous observations. OA apportionment results from PMF-AMS are compared to the PM2.5 chemical mass balance of organic molecular markers (CMB-OMM, from GC/MS analysis of filters). Results from both methods are overall consistent. Both assign the major components of OA to primary urban, biomass burning/woodsmoke, and secondary sources at similar magnitudes. The 2006 Mexico City emissions inventory underestimates the urban primary PM2.5 emissions by a factor of ~4, and it is ~16 times lower than afternoon concentrations when secondary species are included. Additionally, the forest fire contribution is at least an order-of-magnitude larger than in the inventory
    corecore