University of New Hampshire University of New Hampshire Scholars' Repository

Earth Sciences Scholarship

Earth Sciences

4-16-2004

Nighttime removal of NOx in the summer marine boundary layer

S S. Brown University of Colorado, Boulder

Jack E. Dibb University of New Hampshire, jack.dibb@unh.edu

H Stark University of Colorado Boulder

M Aldener University of Colorado, Boulder

Marcy Vozzella University of New Hampshire - Main Campus

See next page for additional authors

Follow this and additional works at: https://scholars.unh.edu/earthsci_facpub Part of the <u>Atmospheric Sciences Commons</u>

Recommended Citation

Brown, S. S., et al. (2004), Nighttime removal of NOx in the summer marine boundary layer, Geophys. Res. Lett., 31, L07108, doi:10.1029/2004GL019412.

This Article is brought to you for free and open access by the Earth Sciences at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Earth Sciences Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

Authors

S S. Brown, Jack E. Dibb, H Stark, M Aldener, Marcy Vozzella, Sallie I. Whitlow, E J. Williams, Brian M. Lerner, R Jakoubek, A M. Middlebrook, J A. DeGouw, C Warneke, P D. Goldan, W C. Kuster, W M. Angevine, D Sueper, Patricia K. Quinn, Timothy S. Bates, James Meagher, Fred C. Fehsenfeld, and A R. Ravishankara

Nighttime removal of NO_x in the summer marine boundary layer

S. S. Brown,^{1,2} J. E. Dibb,³ H. Stark,^{1,2} M. Aldener,^{1,2} M. Vozella,⁴ S. Whitlow,⁴ E. J. Williams,^{1,2} B. M. Lerner,^{1,2} R. Jakoubek,¹ A. M. Middlebrook,¹ J. A. DeGouw,^{1,2}

C. Warneke,^{1,2} P. D. Goldan,¹ W. C. Kuster,¹ W. M. Angevine,^{1,2} D. T. Sueper,^{1,2} P. K. Quinn,⁵ T. S. Bates,⁵ J. F. Meagher,¹ F. C. Fehsenfeld,¹ and A. R. Ravishankara^{1,6}

Received 2 January 2004; revised 13 February 2004; accepted 3 March 2004; published 10 April 2004.

[1] The nitrate radical, NO₃, and dinitrogen pentoxide, N₂O₅, are two important components of nitrogen oxides that occur predominantly at night in the lower troposphere. Because a large fraction of NO2 reacts to form NO3 and N_2O_5 during the course of a night, their fate is an important determining factor to the overall fate of NOx (=NO and NO_2). As a comprehensive test of nocturnal nitrogen oxide chemistry, concentrations of O₃, NO, NO₂, NO₃, N₂O₅, HNO₃ and a host of other relevant compounds, aerosol abundance and composition, and meteorological conditions were measured in the marine boundary layer from the NOAA research vessel Ronald H. Brown off the East Coast of the United States as part of the New England Air Quality Study (NEAQS) during the summer of 2002. The results confirm the prominent role of NO₃ and N₂O₅ in converting NO_x to HNO_3 at night with an efficiency on par with daytime photochemical conversion. The findings demonstrate the large role of nighttime chemistry in determining the NO_x budget and consequent production of ozone. INDEX TERMS: 0322 Atmospheric Composition and Structure: Constituent sources and sinks; 0345 Atmospheric Composition and Structure: Pollution-urban and regional (0305); 0365 Atmospheric Composition and Structure: Troposphere-composition and chemistry. Citation: Brown, S. S., et al. (2004), Nighttime removal of NO_x in the summer marine boundary layer, Geophys. Res. Lett., 31, L07108, doi:10.1029/2004GL019412.

Introduction 1.

[2] Photochemical ozone production in the troposphere depends critically on NO_x (=NO + NO₂). The budget for the emissions of NO_x and its rate of removal from the atmosphere are therefore of substantial current interest. The chief NO_x removal mechanism is the conversion of NO_2 to nitric acid (HNO₃), a soluble compound whose primary fate in the troposphere is deposition to the surface or rain-out. Figure 1 summarizes the two most important pathways by which this

Copyright 2004 by the American Geophysical Union. 0094-8276/04/2004GL019412

conversion may occur. One is the daytime reaction of NO₂ with hydroxyl radical (OH) [McConnell and McElroy, 1973]; the other is the formation of the nitrate radical, NO₃, and dinitrogen pentoxide, N₂O₅ [Platt et al., 1984], compounds that occur in appreciable concentration only at night in the lower troposphere.

[3] Dinitrogen pentoxide is a unique component of total reactive nitrogen (NO_v) in the troposphere because it has a bond energy that allows for reversible, temperature-dependant storage and/or transport of NO_x and because it contains two NO_x moieties. As the acid anhydride of nitric acid, it hydrolyzes readily to HNO₃ via a heterogeneous reaction on the surface of aerosol particles, a potentially efficient NO_x sink. Several global scale modeling studies have highlighted the importance of N₂O₅ hydrolysis in regulating NO_x [Dentener and Crutzen, 1993; Riemer et al., 2003]. The nitrate radical is a key nighttime oxidant [Platt and Heintz, 1994]; reaction of NO₃ with hydrocarbons and reduced sulfur compounds can produce a significant quantity of HNO₃. Although the loss of NO₃ and N₂O₅ represents a potentially large contribution to the removal of NO_x from the atmosphere, it has remained poorly quantified. Recent estimates for the nocturnal conversion rate of NO_x to HNO₃ based on measurements of NO3 via Differential Optical Absorption Spectroscopy (DOAS) have ranged from values roughly equal to the daytime conversion rate to significantly smaller conversion rates at night [Smith et al., 1995; Heintz et al., 1996; Allan et al., 2000; Geyer et al., 2001; Vrekoussis et al., 2003].

2. Measurements

[4] Recently, we have demonstrated a sensitive, in-situ method for detection of both NO3 and N2O5 based on Cavity Ring-Down Spectroscopy (CaRDS) [Brown et al., 2002]. The CaRDS instrument detects NO₃ via its strong visible absorption band near 662 nm and simultaneously detects N₂O₅ by thermal conversion to NO₃ in a separate absorption cell. During the summer of 2002, this instrument was deployed on the NOAA research vessel (R/V) Ronald H. Brown to measure NO_3 and N_2O_5 concentrations in the marine boundary layer as part of the New England Air Quality Study. The ship carried a suite of in-situ measurements of trace gases (O₃, nitrogen oxides, speciated VOC, etc.), aerosol size and composition, and meteorological data. Of particular importance to this study was the measurement of HNO₃ via mist chamber sampling/ion chromatography with a time resolution of 5 min [Scheuer et al., 2003]. Figure 2 shows the cruise track of the R/V Brown along the East Coast of the United States. The continental outflow

¹NOAA Aeronomy Laboratory, Boulder, Colorado, USA.

²Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, Colorado, USA.

³Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, New Hampshire, USA.

⁴Climate Change Research Center, University of New Hampshire, Durham, New Hampshire, USA.

⁵NOAA Pacific Marine Environmental Laboratory, Seattle, Washington, USA.

⁶Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA.

Figure 1. Chemical cycling of nitrogen oxides. Red arrows indicate reactions that require sunlight, while black arrows indicate reactions that do not. Note that reaction of NO with NO₃ is shown in red because, in the absence of recent NO_x emission, the presence of NO requires solar photolysis of NO₂.

over the ocean surface in this region provides a unique opportunity for the study of the chemical transformations occurring within polluted air masses, both because of the lack of emissions from sources close to the detection region, and because the stability of the boundary layer over the ocean surface reduces the influence of meteorological effects on the abundances of trace compounds. The combination of in-situ observations of NO₂, NO₃, N₂O₅ and HNO₃ in the polluted continental outflow over the ocean surface provides a direct, experimental quantification of the relative efficiencies of day and night conversion of NO_x to HNO₃.

3. Results

[5] The upper panel of Figure 3 plots a diurnal average of the mixing ratio of HNO₃ from the NEAQS campaign, along with those of NO₃ and N₂O₅. Also shown is a spectral radiometer measurement of the photolysis rate coefficient of O_3 to produce O (¹D), an important OH precursor. The average is for the final 11 days of the NEAQS data set (red portion of the cruise track in Figure 2). The diurnal pattern of NO3 and N2O5 illustrates the efficient daytime destruction of NO₃ and the buildup of both compounds during the night. Daytime mixing ratios were typically below the instrumental detection limit (except in late afternoon on some occasions), whereas the nighttime mixing ratios reached averaged values of 17 and 84 pptv for NO3 and N_2O_5 , respectively. It is worth noting that these abundances are small compared to NO_x, as shown in Figure 4. The latter had an average mixing ratio of 4.0 ppbv at night, when it was almost exclusively NO2, so that on average the sum, $NO_3 + 2 \times N_2O_5$ (since N_2O_5 contains 2 NO_x), was approximately 5% of NO2. The small abundances of NO3 and N₂O₅ relative to NO₂ imply that the removal of NO₃ and N2O5, and therefore NOx, was efficient. Reaction of NO_2 with O_3 (rate limiting) and the subsequent reaction of NO_3 with NO_2 may consume 60–90% of the NO_2 within a given air parcel in the course of a 10 hour night for the average conditions during NEAQS. The presence of only a small amount of NO_3 and N_2O_5 relative to NO_x indicates rapid nocturnal sinks for NO_3 and N_2O_5 .

[6] The diurnal pattern of nitric acid in Figure 3 is consistent with this observation. It displays a clear maximum in the middle of the day, peaking at approximately local noon, coincident with the peak in the O₃ photolysis rate. The daytime HNO₃ profile approximately follows its source from photochemical OH production. In addition to the noon maximum, the HNO₃ profile shows definite minima at dusk and dawn, periods when neither the night nor day production is active. The minima occur when there is insufficient sunlight to drive significant production of OH, but sufficient sunlight to produce enough NO from NO₂ photolysis to suppress NO₃. Finally, the profile shows a relatively constant, large HNO₃ abundance throughout the night, providing clear evidence for a strong, nocturnal source. That the HNO₃ profile follows its sources throughout a diurnal cycle implies a sink that removes HNO₃ on a timescale comparable to diurnal variations. As discussed below, deposition to the ocean surface from the shallow marine boundary layer can plausibly account for the entire HNO₃ sink, although there may also have been a smaller contribution due to uptake by sea salt aerosol. (The loading of NO_3^- in the supermicron aerosol, sampled through a 7 stage impactor and analyzed by ion chromatography, was equivalent to 17% of the gas-phase HNO₃ concentration.) Radiosondes launched from the R/V Brown showed the marine boundary layer to be roughly 100 m and showed that it did not have large day-to-night variations in either depth or stability (W. M. Angevine et al., Coastal boundary layer influence on pollutant transport in New England, submitted to Journal of Applied Meteorology, 2003).

[7] The lack of large variation in the marine boundary layer height, its stability or the temperature (with an average diurnal variation of 3.6° C) allows a direct comparison of the daytime and nighttime HNO₃ source in Figure 3. Since the HNO₃ loss is rapid, its concentration is proportional to its production rate in each period, and direct integration of the profile yields an estimate for the relative HNO₃ production during day and night. The area underneath the profile during

Figure 2. Map of the East Coast of the United States showing the cruise track of the R/V Ronald H. Brown during July–August, 2002. The red segment of the cruise track shows the ship position during the 11 day average of Figure 3.

Figure 3. Upper panel: Diurnally averaged mixing ratios of NO₃ and N₂O₅ (1 min average, 40% measurement uncertainty, 120% relative standard deviation during the averaging period) and HNO_3 (5 min average, 35%) uncertainty, 80% relative standard deviation) for the final 11 days of the NEAOS campaign (July 29-August 9, 2002). Local noon on the x-axis is taken as the minimum in the solar zenith angle. The yellow background (no scale) shows J(O (^{1}D)). (One three hour period, 11:45–14:45 on July 30, 2002, has been excluded from the HNO₃ average on the basis of large NO_x mixing ratios, but this did not significantly affect any of the interpretation discussed in the text.) Lower Panel: Comparison of the diurnally average HNO₃ mixing ratio to a calculation (shaded area) based on integration of equations (1)–(3) plus a constant first-order loss term. The shaded region shows the possible range of nocturnal values for S between 1 and 2 (see text).

the nighttime hours (SZA $\geq 90^{\circ}$, or 9.8 hours) accounts for 35% of the total, indicating that roughly this fraction of HNO₃ arises from nocturnal sources. This time period accounts for 41% of a diurnal cycle, meaning that the averaged nocturnal production rate of HNO₃ was roughly 80% of the average daytime production rate. An additional HNO₃ measurement on the R/V *Brown* by a similar method [*Russell et al.*, 2003] but with lower time resolution (2 hours) suggested HNO₃ production at night accounted for approximately 30% of the total, in line with the conclusion from the higher time-resolution data.

4. Analysis

[8] Production of HNO₃ from the reaction of NO₂ with photochemically produced OH accounts for the majority of NO_x loss during the day. Additional daytime NO_x losses, such as organic nitrate formation [*Day et al.*, 2003], remain uncertain but are likely small in comparison. Formation of peroxyacetyl nitrates (PANs) is a significant instantaneous NO₂ loss but not a long-term NO_x sink. At night, on the other hand, HNO₃ production represents a lower limit to the actual NO_x loss since the major nocturnal sinks for NO₃ and N₂O₅ do not yield exclusively gas phase HNO₃. For example, the primary sinks for NO₃ during NEAQS were reactions with biogenic hydrocarbons (e.g., isoprene and

terpenes) emitted from land-based sources and dimethyl sulfide (DMS) emitted from the ocean. While the reaction of NO₃ with DMS yields nitric acid with unit efficiency [Jensen et al., 1992], the yields of gas phase nitric acid from the reactions of NO₃ with biogenic hydrocarbons (e.g., isoprene) are small, and the yields and fates of different products of the initial oxidation step are uncertain [Atkinson and Arey, 2003]. The primary sink for N₂O₅ is hydrolysis (i.e., $N_2O_5 + H_2O \rightarrow 2HNO_3$), a process thought to occur mainly heterogeneously on the surface of aerosol. Because submicron aerosol accounted for a large fraction (>96%) of the total aerosol surface, heterogeneous loss of N₂O₅ likely occurred mainly in this fraction of the aerosol (i.e., not on the larger sea salt particles). The resulting HNO₃ would not likely remain in the aerosol phase due to the high acidity of the submicron aerosol [Clegg et al., 1998], which Aerosol Mass Spectrometry (AMS) measurements showed to have an ammonium to sulfate mole ratio less than two. The observed nitrate loading of 0.3 μ g m⁻³ (also from AMS data) was equivalent to 0.1 ppbv of gas phase HNO3, and showed no day to night variation. Submicron aerosol therefore sequestered at most 10% of gas phase HNO₃.

[9] The lower panel of Figure 3 compares the observed HNO₃ mixing ratio to a calculation based on daytime and nighttime production and a sink that is constant during both periods. The daytime loss rate for NO_x and the production rate for HNO₃ are nearly equivalent, governed primarily by the association of OH with NO₂ to form HNO₃ with rate coefficient k_{day} .

$$\frac{d[\text{NO}_x]_{day}}{dt} \approx \frac{d[\text{HNO}_3]_{day}}{dt} = k_{day} \times [\text{OH}] \times [\text{NO}_2]$$
(1)

An expression for the nighttime NO_x loss rate comes from the assumption of a steady state in the intermediates, NO_3

Figure 4. Diurnal averaged mixing ratios of NO_x (NO and NO_2) (upper) and O_3 (middle). The spikes in NO_x are due to ship plumes, which have been filtered from the data at night (60 data points removed out of more than 15,000 in the average). The lower panel shows the averaged calculated OH concentration.

and N₂O₅ (reasonable for NEAQS conditions, with warm nocturnal temperatures and rapid sinks for these compounds [*Brown et al.*, 2003]), and the observation of near total losses for these compounds. The reaction of NO₂ with O₃ (rate coefficient k_{night}) is then the limiting step that determines the nocturnal NO_x loss rate.

$$\frac{d[\text{HNO}_3]_{night}}{dt} \le \left| \frac{d[\text{NO}_x]_{night}}{dt} \right| \approx k_{night} \times S \times [\text{NO}_2] \times [\text{O}_3] \quad (2)$$

The factor S varies between one (loss dominated by NO_3 reactions) and two (loss dominated by N_2O_5 reactions).

$$S = 1 + \frac{k_{N2O5} \times K_{eq} \times [\text{NO}_2]}{k_{NO3} + k_{N2O5} \times K_{eq} \times [\text{NO}_2]}$$
(3)

Here $k_{\rm NO3}$ and $k_{\rm N2O5}$ refer to the effective first-order loss rate coefficient for these compounds, and K_{eq} is the equilibrium constant for the reversible reaction of NO₃ with NO₂ to form N_2O_5 . The calculation in the lower panel of Figure 3 is an integration of equations (1) and (2) plus an assumed, firstorder loss term for HNO₃. The integration assumes an equality in equation (2) and switches the nocturnal production on and off according to the observed rise and decay of NO₃ and N₂O₅. The shaded region encompasses values of S between one and two. The measured diurnal averages of NO₂ and O₃ shown in Figure 4 are inputs to the calculation. The NO₂ profile shows variability due to the inhomogeneous emissions of this primary pollutant, but no large difference in the average day/night concentrations. The diurnal average of the OH concentration, also shown in Figure 4, comes from an average of daily, calculated values [Derwent, 1999; Warneke et al., 2004]. The HNO₃ sink rate coefficient $(1/\tau_{\rm HNO3})$ is an adjustable parameter used to match the peak daytime values in the calculation to the observation. The procedure yields an HNO₃ lifetime, $\tau_{HNO3} = 2.3$ hours, a value that is consistent with the observed time constant for changes in the nitric acid concentration in Figure 3. This lifetime gives a deposition velocity from a 100 m boundary layer of 1.2 cm s⁻¹, consistent with previously reported values for HNO₃ [Hanson and Lindberg, 1991]. The calculation reproduces the broad features of the observed diurnal variation in HNO₃, although there are small differences with the minima in the HNO₃ profile near dawn and dusk. The observed values generally fall toward the lower end of the calculated range, indicating either that the loss of NO₃ was larger than that of N₂O₅, or that the observation is in fact a lower limit to the actual loss of NOx. As we will show in a forthcoming publication (M. Aldener et al., In situ measurements of NO3 and N2O5 during NEAQS: Reactivity and loss mechanisms, manuscript in preparation, 2004), losses of NO₃ and N₂O₅ were roughly equivalent during NEAQS (i.e., S near 1.5), suggesting the latter interpretation is correct. Thus, although the integration of the nitric acid profile suggested roughly 1/3 of the HNO₃ production occurred at night, the actual nocturnal loss of NO_x may have been a larger fraction of the total.

[10] The chemistry that gives rise to NO_3 and N_2O_5 is a determining factor in the loss of NO_x from the atmosphere. The foregoing discussion has shown that nighttime processes destroy a comparable quantity of NO_x pollution as do daytime processes over the ocean surface off the New

England coast, and that they must therefore have a significant influence on the air quality of the region. From a more general perspective, the role of NO₃ and N₂O₅, i.e., their ability to serve as either a reservoir or a sink for NO_x, may vary strongly with both season and location. The abundance of N₂O₅ is a key in this regard since it varies up to part per billion mixing ratios and may account for significant fraction of NO_y, and since the variability in N₂O₅ chemistry can lead to either strong or weak sinks for NO_x. Characterization of these nocturnal processes is therefore critical to understanding the cycling of atmospheric NO_x.

[11] Acknowledgments. The authors thank Michael Trainer, Andrew Newman, James Roberts, Doug Worsnop and Ronald Cohen for useful discussions. This work was funded by the New England Air Quality Study and by NOAA's Health of the Atmosphere Program.

References

- Allan, B. J., et al. (2000), The nitrate radical in the remote marine boundary layer, J. Geophys. Res., 105(D19), 24,191–24,204.
- Atkinson, R., and J. Arey (2003), Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review, *Atmos. Environ.*, 37, suppl. 2, 197–219.
- Brown, S. S., et al. (2002), Simultaneous in-situ detection of atmospheric NO₃ and N₂O₅ via cavity ring-down spectroscopy, *Rev. Sci. Instrum.*, 73(9), 3291–3301.
- Brown, S. S., H. Stark, and A. R. Ravishankara (2003), Applicability of the steady state approximation to the interpretation of atmospheric observations of NO₃ and N₂O₅, *J. Geophys. Res.*, 108(D17), 4539, doi:10.1029/ 2003JD003407.
- Clegg, S. L., et al. (1998), A thermodynamic model system H⁺-NH₄⁺-SO₄²⁻-NO₃⁻-H₂O at tropospheric temperatures, *J. Phys. Chem.*, *A*, 102, 2137–2154.
- Day, D. A., M. B. Dillon, P. J. Wooldridge, J. A. Thornton, R. S. Rosen, E. C. Wood, and R. C. Cohen (2003), On alkyl nitrates, O₃, and the "missing NO_y," *J. Geophys. Res.*, 108(D16), 4501, doi:10.1029/2003JD003685.
- Dentener, F. J., and P. J. Crutzen (1993), Reaction of N₂O₅ on tropospheric aerosols: Impact on the global distributions of NO_x, O₃, and OH, *J. Geophys. Res.*, *98*(D4), 7149–7163.
- Derwent, R. G. (1999), Reactive hydrocarbons and photochemical air pollution, in *Reactive Hydrocarbons in the Atmosphere*, edited by C. N. Hewitt, pp. 267–291, Academic, San Diego, Calif.
- Geyer, A., et al. (2001), Chemistry and oxidation capacity of the nitrate radical in the continental boundary layer near Berlin, J. Geophys. Res., 106(D8), 8013-8025.
- Hanson, P. J., and S. E. Lindberg (1991), Dry deposition of reactive nitrogen compounds: A review of leaf, canopy and non-foliar measurements, *Atmos. Environ.*, *Part A*, 25(8), 1615–1634.
- Heintz, F., et al. (1996), Long-term observation of nitrate radicals at the Tor Station, Kap Arkona (Rügen), J. Geophys. Res., 101(D17), 2891–2910.
- Jensen, N. R., et al. (1992), Products and mechanisms of the gas phase reactions of NO₃ with CH₃SCH₃, CD₃SCD₃, CH₃SH and CH₃SSCH₃, *J. Atmos. Chem.*, *14*, 95–108.
- McConnell, J. C., and M. B. McElroy (1973), Odd nitrogen in the atmosphere, J. Atmos. Sci., 30(8), 1465–1480.
- Platt, U., and F. Heintz (1994), Nitrate radicals in tropospheric chemistry, Isr. J. Chem., 34, 289–300.
- Platt, U. F., et al. (1984), Measurement of nitrate radical concentrations in continental air, *Environ. Sci. Technol.*, 18, 365–369.
- Riemer, N., H. Vogel, B. Vogel, B. Schell, I. Ackermann, C. Kessler, and H. Hass (2003), Impact of the heterogeneous hydrolysis of N₂O₅ on chemistry and nitrate aerosol formation in the lower troposphere under photosmog conditions, J. Geophys. Res., 108(D4), 4144, doi:10.1029/ 2002JD002436.
- Russell, K. M., W. C. Keene, J. R. Maben, J. N. Galloway, and J. L. Moody (2003), Phase partitioning and dry deposition of atmospheric nitrogen at the mid-Atlantic U.S. coast, J. Geophys. Res., 108(D21), 4656, doi:10.1029/2003JD003736.
- Scheuer, E., R. W. Talbot, J. E. Dibb, G. K. Seid, L. DeBell, and B. Lefer (2003), Seasonal distributions of fine aerosol sulfate in the North American Arctic basin during TOPSE, *J. Geophys. Res.*, 108(D4), 8370, doi:10.1029/2001JD001364.
- Smith, N., et al. (1995), Nighttime radical chemistry in the San Joaquin valley, Atmos. Environ., 29(21), 2887–2897.
- Warneke, C., et al. (2004), Comparison of day and nighttime oxidation of biogenic and anthropogenic VOCs along the New England coast in sum-

mer during NEAQS 2002, J. Geophys. Res., doi:10.1029/2003JD004424, accepted.

Vrekoussis, M., et al. (2003), Role of NO₃ radical in oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign, *Atmos. Chem. Phys. Discuss.*, *3*, 3135–3169.

M. Aldener, W. M. Angevine, S. S. Brown, J. A. DeGouw, F. C. Fehsenfeld, P. D. Goldan, R. Jakoubek, W. C. Kuster, B. M. Lerner, J. F.

Meagher, A. M. Middlebrook, A. R. Ravishankara, H. Stark, D. T. Sueper, C. Warneke, and E. J. Williams, NOAA Aeronomy Laboratory, R/AL2, 325 Broadway, Boulder, CO 80305, USA. (sbrown@al.noaa.

gov) T. S. Bates and P. K. Quinn, NOAA Pacific Marine Environmental Laboratory, Seattle, Washington, USA.

J. E. Dibb, Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, New Hampshire, USA. M. Vozella and S. Whitlow, Climate Change Research Center, University

of New Hampshire, Durham, New Hampshire, USA.