29 research outputs found

    A cryogenic testbed for the characterisation of large detector arrays for astronomical and Earth-observing applications in the near to very-long-wavelength infrared

    Get PDF
    In this paper we describe a cryogenic testbed designed to offer complete characterisation-via a minimal number of experimental configurations— of mercury cadmium telluride (MCT) detector arrays for low-photon background applications, including exoplanet science and solar system exploration. Specifically, the testbed offers a platform to measure the dark current of detector arrays at various temperatures, whilst also characterising their optical response in numerous spectral bands. The average modulation transfer function (MTF) can be found in both dimensions of the array along with the overall quantum efficiency. Working from a liquid-helium bath allows for measurement of arrays from 4.2 K and active-temperature control of the surface to which the array is mounted allows for characterisation of arrays at temperatures up to 80 K, with the temperature of the array holder known to an accuracy of at least 1 mK, with the same level of long-term stability

    Initial performance of Bicep3: a degree angular scale 95 GHz band polarimeter

    Get PDF
    Bicep3 is a 550-mm aperture telescope with cold, on-axis, refractive optics designed to observe at the 95-GHz band from the South Pole. It is the newest member of the Bicep/Keck family of inflationary probes specifically designed to measure the polarization of the cosmic microwave background (CMB) at degree angular scales. Bicep3 is designed to house 1280 dual-polarization pixels, which, when fully populated, totals to ∌9× the number of pixels in a single Keck 95-GHz receiver, thus further advancing the Bicep/Keck program’s 95 GHz mapping speed. Bicep3 was deployed during the austral summer of 2014–2015 with nine detector tiles, to be increased to its full capacity of 20 in the second season. After instrument characterization, measurements were taken, and CMB observation commenced in April 2015. Together with multi-frequency observation data from Planck, Bicep2, and the Keck Array, Bicep3 is projected to set upper limits on the tensor-to-scalar ratio to râ‰Č0.03 at 95 % C.L

    Detection of B-mode polarization at degree angular scales by BICEP2

    Get PDF
    We report results from the BICEP2 experiment, a cosmic microwave background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around ℓ∌80. The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor 150 GHz bolometers each with temperature sensitivity of ≈300  ΌKCMB√s . BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square deg was observed to a depth of 87 nK deg in Stokes Q and U. In this paper we describe the observations, data reduction, maps, simulations, and results. We find an excess of B-mode power over the base lensed-ΛCDM expectation in the range 305σ. Through jackknife tests and simulations based on detailed calibration measurements we show that systematic contamination is much smaller than the observed excess. Cross correlating against WMAP 23 GHz maps we find that Galactic synchrotron makes a negligible contribution to the observed signal. We also examine a number of available models of polarized dust emission and find that at their default parameter values they predict power ∌(5–10)× smaller than the observed excess signal (with no significant cross-correlation with our maps). However, these models are not sufficiently constrained by external public data to exclude the possibility of dust emission bright enough to explain the entire excess signal. Cross correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed with 3σ significance and its spectral index is found to be consistent with that of the CMB, disfavoring dust at 1.7σ. The observed B-mode power spectrum is well fit by a lensed-ΛCDM+tensor theoretical model with tensor-to-scalar ratio r=0.20 +0.07 −0.05, with r=0 disfavored at 7.0σ. Accounting for the contribution of foreground, dust will shift this value downward by an amount which will be better constrained with upcoming data sets

    Planck 2013 results. VI. High Frequency Instrument data processing

    Get PDF
    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857GHz with an angular resolution ranging from 9.́7 to 4.́6. The detector noise per (effective) beam solid angle is respectively, 10, 6 , 12, and 39 ΌK in the four lowest HFI frequency channels (100−353GHz) and 13 and 14 kJy sr-1 in the 545 and 857 GHz channels. Relative to the 143 GHz channel, these two high frequency channels are calibrated to within 5% and the 353 GHz channel to the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 <ℓ < 2500), are calibrated relative to 143 GHz to better than 0.2%

    Thermal Modelling and Characterisation of Semiconductor Bolometers

    No full text
    A revised version of the Griffin & Holland ideal semiconductor bolometer model is presented and its use in determining bolometer properties and parameters from experimental load curve measurements is discussed. We show that degeneracy between some bolometer parameters can only be broken by model fitting a family of load curves over a range of bath temperatures, and that measurements with the bolometer blanked (zero absorbed radiant power) are essential for unambiguous determination of the main parameters. The influence of measurement errors on parameter recovery is analysed using synthetic noisy data sets

    Commissioning SCUBA-2 at JCMT and optimising the performance of the superconducting TES arrays

    No full text
    SCUBA-2 is a state of the art 10,000 pixel submillimeter camera providing wide-field simultaneous imaging at 450 and 850 microns. The instrument is in the final stages of commissioning at the JCMT and is the largest low temperature detector array in operation. Twin focal planes each consist of four 32 by 40 sub-arrays of superconducting Transition Edge Sensor (TES) bolometers, with inline SQUID time-division multiplexed readout. In this paper we discuss the challenges and steps taken to optimise the performance of the SCUBA-2 arrays and maximise the mapping speed of the instrument. We present results of characterising the eight 1280 bolometer arrays and show the performance of the detectors and the instrument

    Microstrip-coupled TES bolometers for CLOVER

    No full text
    Cℓover aims to detect the signature of gravitational waves from inflation by measuring the B-mode polarization of the cosmic microwave background. We have produced microstrip-coupled TES detectors for Cℓover. The dark NEP of these detectors is dominated by the fundamental phonon-noise limit and we have measured high optical detection efficiencies in these devices with two completely different RF architectures: a finline transition and a four-probe OMT. Cℓover consists of two telescopes: one operating at 97 GHz, and one with a combined 150/220-GHz focal plane. The 220- and 150-GHz detectors use waveguide probes while the 97-GHz detectors use finline transitions to couple waveguide modes into the microstrip. Each detector is fabricated as a single chip to ensure a 100% operational focal plane. The detectors are mounted in eightpixel modules and the focal planes are populated using 12 detector modules per detection frequency. Each detector module contains a time-division SQUID multiplexer to read out the detectors. Further amplification of the multiplexed signals is provided by SQUID series arrays. We describe the design of the Cℓover detectors and present measurements of the prototype detectors' performance showing that they satisfy the requirement of photon-noise limited operation on Cℓover

    The Planck High Frequency Instrument, a third generation CMB probe and the first submillimeter surveyor

    Get PDF
    The High Frequency Instrument of the Planck satellite is dedicated to the measurement of the anisotropy of the Cosmic Microwave Background (CMB). Its main goal is to map the CMB with a sensitivity of ΔT/T=2.10-6 and an angular resolution of 5 arcmin in order to constrain cosmological parameters. Planck is a project of the European Space Agency based on a wide international collaboration, including United States and Canadian laboratories. The architecture of the satellite is driven by the thermal requirements resulting from the search for low photon noise. Especially, the passively cooled telescope should be at less than 50K, while a cascade of cryo-coolers will ensure the cooling of the HFI bolometers down to 0.1K. This last temperature will be produced by a gravity insensitive 3He/4He dilution cooler. This will be achieved at the L2 Lagrangian point of the Sun-Earth system. The whole sky will be observed two times in the 14 months mission with a scanning strategy based on a 1RPM rotation of the satellite. In addition to the cosmological parameters that can be derived from the CMB maps, Planck will deliver nine high sensitivity submillimeter maps of the whole sky that will constitute unique data available to the whole astronomical community

    Electrical and optical measurements on the first SCUBA-2 prototype 1280pixel submillimeter superconducting bolometer array

    No full text
    SCUBA-2 is a submillimeter camera being built for the James Clerk Maxwell Telescope in Hawaii. Bringing CCD style imaging to the submillimeter for the first time, with over 10000pixels, it will provide a revolutionary improvement in sensitivity and mapping speed. We present results of the first tests on a prototype 1280pixel SCUBA-2 subarray; the full instrument will be made up of eight such subarrays. The array is made up of transition edge sensor (TES) detectors, with Mo/Cu bilayers as the sensing element. To keep the number of wires reasonable, a multiplexed readout is used. Unlike previous TES arrays, an in-focal plane multiplexer configuration is used, in which the multiplexing elements are located beneath each pixel. To achieve the required performance, the detectors are operated at a temperature of approximately 120mK. We describe the results of a basic electrical and optical characterization of the array, demonstrating that it is fully operational. Noise measurements were made on several pixels and gave a noise equivalent power below 2.5×10−17WHZ−0.5, within the requirements for SCUBA-2. The construction of the testbed used to carry out these measurements is also described

    Characterization of a prototype SCUBA-2 1280-pixel submillimetre superconducting bolometer array

    No full text
    We present the results of characterization measurements on a 1280 pixel superconducting bolometer array designed for operation at wavelengths around 450 ÎŒm. The array is a prototype for the sub-arrays which will form the focal plane for the SCUBA-2 sub-mm camera, being built for the James Clerk Maxwell Telescope (JCMT) in Hawaii. With over 10 000 pixels in total, it will provide a huge improvement in both sensitivity and mapping speed over existing instruments. The array consists of molybdenum-copper bi-layer TES (transition edge sensor) pixels, bonded to a multiplexer. The detectors operate at a temperature of approximately 175 mK, and require a heat sink at a temperature of approximately 60 mK. In contrast to previous TES arrays, the multiplexing elements are located beneath each pixel (an "in-focal plane" configuration). We present the results of electrical and optical measurements, and show that the optical NEP (noise equivalent power) is less than 1.4 × 10-16 W Hz-0.5 and thus within the goal of 1.5 × 10-16 W Hz-0.5
    corecore