7 research outputs found

    Mineral dust deposition in interglacial and glacial climate conditions: model results

    No full text
    The global aerosol/climate model ECHAM5-HAM is used in order to investigate the dust cycle for four interglacial and one glacial climate conditions. The 20-year time-slices are the pre-industrial control (CTRL), mid-Holocene (6000 years BP), last glacial inception (115000 years BP), Eemian (126000 years BP) and Last Glacial Maximum (LGM) (21000 years BP) time intervals. The study is focused on the Antarctic region. The model is able to reproduce the magnitude order of dust deposition globally for the pre-industial and LGM climates. Correlation coefficient of the natural logarithm of the observed and modeled values is 0.78 for the CTRL and 0.81 for the LGM. For the pre-industrial simulation the model overestimates observed values in Antarctica by a factor of about 2-3 due to overestimation of the Australian dust source and too high wet deposition in the Antarctica interior. In the LGM, the model underestimates dust deposition in eastern Antarctica by a factor of about 4-5 due to underestimation of the South American dust source. More records are needed to validate dust deposition for the past interglacial time-slices. The modeled results show that dust deposition in Antarctica in the past interglacial time-slices is higher than in the CTRL simulation. The largest increase of dust deposition in Antarctica is simulated for the LGM, showing about 10-fold increase compared to CTRL

    Mineral dust variability in Antarctic ice for different climate conditions

    Get PDF
    This study aims to understand the dust deposition changes on the Antarctic ice sheet in different climatic stages. To this end high resolution dust concentration and size profiles from the EPICA-DML ice core over the transition from the last Glacial to the Holocene (T1) were combined with model experiments for four interglacial time slices and the Last Glacial Maximum (LGM). A strong decrease in dust concentration (factor 46) and a slight increase in dust size was observed during T1. A strong coupling between transport and intensified sources during the Glacial could be derived from the seasonal variability of concentration and size and its phase-lag. This strong coupling vanishes during the Holocene. The model simulates increased dust deposition in Antarctica for all past interglacial time slices compared to the pre-industrial period. The major cause for the increase is enhanced Southern Hemisphere dust emission, but changes in atmospheric transport are also relevant. The maximum dust deposition in Antarctica is simulated for the LGM, showing a 10-fold increase compared to preindustrial conditions

    Dust deposition in Antarctica in glacial and interglacial climate conditions: a modelling study

    Get PDF
    The mineral dust cycle responds to climate variations and plays an important role in the climate system by affecting the radiative balance of the atmosphere and modifying biogeochemistry. Polar ice cores provide a unique information about deposition of aeolian dust particles transported over long distance. These cores are a paleoclimate proxy archive of climate variability thousands of years ago. The current study is a first attempt to simulate past interglacial dust cycles with a global aerosol-climate model ECHAM5-HAM. The results are used to explain the dust deposition changes in Antarctica in terms of quantitative contribution of different processes, such as emission, atmospheric transport and precipitation, which will help to interpret paleodata from Antarctic ice cores. The investigated periods include four interglacial time-slices such as the pre-industrial control (CTRL), mid-Holocene (6000 yr BP), last glacial inception (115 000 yr BP) and Eemian (126 000 yr BP). One glacial time interval, which is Last Glacial Maximum (LGM) (21 000 yr BP) was simulated as well as to be a reference test for the model. Results suggest an increase of mineral dust deposition globally, and in Antarctica, in the past interglacial periods relative to the pre-industrial CTRL simulation. Approximately two thirds of the increase in the mid-Holocene and Eemian is attributed to enhanced Southern Hemisphere dust emissions. Slightly strengthened transport efficiency causes the remaining one third of the increase in dust deposition. The moderate change of dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. Maximum dust deposition in Antarctica was simulated for the glacial period. LGM dust deposition in Antarctica is substantially increased due to 2.6 times higher Southern Hemisphere dust emissions, two times stronger atmospheric transport towards Antarctica, and 30% weaker precipitation over the Southern Ocean. The model is able to reproduce the order of magnitude of dust deposition globally and in Antarctica for the pre-industrial and LGM climates

    Monitoring and Forecasting Air Quality over China: Results from the PANDA Modeling System

    No full text
    International audienceWith fast economic growth and development China is experiencing severe air pollution episodes related to rapid industrialization and urbanization since more than three decades. Through collaboration between 7 European and 7 Chinese research universities and institutes, the PANDA (Partnership with China on Space Data) EU-funded project aims to improve our understanding of the processes responsible for the formation, dispersion and destruction of air pollutants in East Asia. By combining space and in-situ observations and surface emissions of chemical pollutants with global and regional models of atmospheric composition, detailed analyses and reliable forecasts of regional air quality are produced with the aim of improving methods for monitoring and forecasting air quality in East Asia.Using a multi-model approach based on several global and regional state-of the art model simulations, we present detailed modeling studies of recent notorious haze events in East Asia (winter 2010 and 2013 haze events). We will demonstrate the effect of uncertainties and differences in current emission inventories for China and their resolution and temporal variation on model performance. We will focus especially on major city clusters that have experienced intense urbanization and population growth. The importance of using a downscaling approach to better reproduce and predict air pollution events that occur in East Asia will be discussed. The relation between the performance of the models and the complexity of their chemistry and aerosol schemes and choice of boundary and atmospheric forcing will be assessed. We will also present results of the air quality forecasting system being developed within PANDA and in collaboration with the EU project MarcoPolo
    corecore