360 research outputs found

    Review on Electro-Gravity Via Geometric Chronon Field

    Full text link
    In 1982, Dr. Sam Vaknin pondered the idea of reconstructing physics based on time as a field. His idea appeared in his doctorate dissertation as an amendment to the Dirac spinor equation. Sam saw the Quantum Field Theory particles and momentum and energy as a result of the language of physics and of the way the human mind perceives reality and not as reality. To the author's opinion, it is a revolution of the language itself and is not a new interpretation of the existing language. The Special Theory of Relativity was a revolution and so was the General Theory of Relativity but yet these theories did not challenge the use of momentum and energy but rather gave them new relativistic interpretation. Later on, Quantum Mechanics used Energy and Momentum operators and even Dirac's orthogonal matrices are multiplied by such operators. Quantum Field Theory assumes the existence of particles which are very intuitive and agree with the human visual system. Particles may be merely a human interpretation of events that occur in the human sensory world. This paper elaborates on one specific interpretation of Sam Vaknin's idea that the author has developed from 2003 up to August 2018. It is a major improvement of previously published papers and it summarizes all of them and includes all the appendices along with new ideas.Comment: This paper corrects (35),and appendix B in an IARD 2016 paper. It adds an exact assessment of mass ratios of particles (43),(43.12),(43.7.1),(43.8), possibly exact Fine Structure Constant^-1 in (43.17.2

    Simultaneously reconstructing viral cross-species transmission history and identifying the underlying constraints

    Get PDF
    The factors that determine the origin and fate of cross-species transmission events remain unclear for the majority of human pathogens, despite being central for the development of predictive models and assessing the efficacy of prevention strategies. Here, we describe a flexible Bayesian statistical framework to reconstruct virus transmission between different host species based on viral gene sequences, while simultaneously testing and estimating the contribution of several potential predictors of cross-species transmission. Specifically, we use a generalized linear model extension of phylogenetic diffusion to perform Bayesian model averaging over candidate predictors. By further extending this model with branch partitioning, we allow for distinct host transition processes on external and internal branches, thus discriminating between recent cross-species transmissions, many of which are likely to result in dead-end infections, and host shifts that reflect successful onwards transmission in the new host species. Our approach corroborates genetic distance between hosts as a key determinant of both host shifts and cross-species transmissions of rabies virus in North American bats. Furthermore, our results indicate that geographical range overlap is a modest predictor for cross-species transmission, but not for host shifts. Although our evolutionary framework focused on the multi-host reservoir dynamics of bat rabies virus, it is applicable to other pathogens and to other discrete state transition processes

    Choosing among Partition Models in Bayesian Phylogenetics

    Get PDF
    Bayesian phylogenetic analyses often depend on Bayes factors (BFs) to determine the optimal way to partition the data. The marginal likelihoods used to compute BFs, in turn, are most commonly estimated using the harmonic mean (HM) method, which has been shown to be inaccurate. We describe a new more accurate method for estimating the marginal likelihood of a model and compare it with the HM method on both simulated and empirical data. The new method generalizes our previously described stepping-stone (SS) approach by making use of a reference distribution parameterized using samples from the posterior distribution. This avoids one challenging aspect of the original SS method, namely the need to sample from distributions that are close (in the Kullback–Leibler sense) to the prior. We specifically address the choice of partition models and find that using the HM method can lead to a strong preference for an overpartitioned model. In contrast to the HM method and the original SS method, we show using simulated data that the generalized SS method is strikingly more precise (repeatable BF values of the same data and partition model) and yields BF values that are much more reasonable than those produced by the HM method. Comparisons of HM and generalized SS methods on an empirical data set demonstrate that the generalized SS method tends to choose simpler partition schemes that are more in line with expectation based on inferred patterns of molecular evolution. The generalized SS method shares with thermodynamic integration the need to sample from a series of distributions in addition to the posterior. Such dedicated path-based Markov chain Monte Carlo analyses appear to be a cost of estimating marginal likelihoods accurately

    Fully Bayesian tests of neutrality using genealogical summary statistics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many data summary statistics have been developed to detect departures from neutral expectations of evolutionary models. However questions about the neutrality of the evolution of genetic loci within natural populations remain difficult to assess. One critical cause of this difficulty is that most methods for testing neutrality make simplifying assumptions simultaneously about the mutational model and the population size model. Consequentially, rejecting the null hypothesis of neutrality under these methods could result from violations of either or both assumptions, making interpretation troublesome.</p> <p>Results</p> <p>Here we harness posterior predictive simulation to exploit summary statistics of both the data and model parameters to test the goodness-of-fit of standard models of evolution. We apply the method to test the selective neutrality of molecular evolution in non-recombining gene genealogies and we demonstrate the utility of our method on four real data sets, identifying significant departures of neutrality in human influenza A virus, even after controlling for variation in population size.</p> <p>Conclusion</p> <p>Importantly, by employing a full model-based Bayesian analysis, our method separates the effects of demography from the effects of selection. The method also allows multiple summary statistics to be used in concert, thus potentially increasing sensitivity. Furthermore, our method remains useful in situations where analytical expectations and variances of summary statistics are not available. This aspect has great potential for the analysis of temporally spaced data, an expanding area previously ignored for limited availability of theory and methods.</p

    Spatial Dynamics of Human-Origin H1 Influenza A Virus in North American Swine

    Get PDF
    The emergence and rapid global spread of the swine-origin H1N1/09 pandemic influenza A virus in humans underscores the importance of swine populations as reservoirs for genetically diverse influenza viruses with the potential to infect humans. However, despite their significance for animal and human health, relatively little is known about the phylogeography of swine influenza viruses in the United States. This study utilizes an expansive data set of hemagglutinin (HA1) sequences (n = 1516) from swine influenza viruses collected in North America during the period 2003–2010. With these data we investigate the spatial dissemination of a novel influenza virus of the H1 subtype that was introduced into the North American swine population via two separate human-to-swine transmission events around 2003. Bayesian phylogeographic analysis reveals that the spatial dissemination of this influenza virus in the US swine population follows long-distance swine movements from the Southern US to the Midwest, a corn-rich commercial center that imports millions of swine annually. Hence, multiple genetically diverse influenza viruses are introduced and co-circulate in the Midwest, providing the opportunity for genomic reassortment. Overall, the Midwest serves primarily as an ecological sink for swine influenza in the US, with sources of virus genetic diversity instead located in the Southeast (mainly North Carolina) and South-central (mainly Oklahoma) regions. Understanding the importance of long-distance pig transportation in the evolution and spatial dissemination of the influenza virus in swine may inform future strategies for the surveillance and control of influenza, and perhaps other swine pathogens

    Assessing the role of live poultry trade in community-structured transmission of avian influenza in China

    Get PDF
    The live poultry trade is thought to play an important role in the spread and maintenance of highly pathogenic avian influenza A viruses (HP AIVs) in Asia. Despite an abundance of small-scale observational studies, the role of the poultry trade in disseminating AIV over large geographic areas is still unclear, especially for developing countries with complex poultry production systems. Here we combine virus genomes and reconstructed poultry transportation data to measure and compare the spatial spread in China of three key subtypes of AIV: H5N1, H7N9, and H5N6. Although it is difficult to disentangle the contribution of confounding factors, such as bird migration and spatial distance, we find evidence that the dissemination of these subtypes among domestic poultry is geographically continuous and likely associated with the intensity of the live poultry trade in China. Using two independent data sources and network analysis methods, we report a regional-scale community structure in China that might explain the spread of AIV subtypes in the country. The identification of this structure has the potential to inform more targeted strategies for the prevention and control of AIV in China

    An Adaptive Interacting Wang-Landau Algorithm for Automatic Density Exploration

    Full text link
    While statisticians are well-accustomed to performing exploratory analysis in the modeling stage of an analysis, the notion of conducting preliminary general-purpose exploratory analysis in the Monte Carlo stage (or more generally, the model-fitting stage) of an analysis is an area which we feel deserves much further attention. Towards this aim, this paper proposes a general-purpose algorithm for automatic density exploration. The proposed exploration algorithm combines and expands upon components from various adaptive Markov chain Monte Carlo methods, with the Wang-Landau algorithm at its heart. Additionally, the algorithm is run on interacting parallel chains -- a feature which both decreases computational cost as well as stabilizes the algorithm, improving its ability to explore the density. Performance is studied in several applications. Through a Bayesian variable selection example, the authors demonstrate the convergence gains obtained with interacting chains. The ability of the algorithm's adaptive proposal to induce mode-jumping is illustrated through a trimodal density and a Bayesian mixture modeling application. Lastly, through a 2D Ising model, the authors demonstrate the ability of the algorithm to overcome the high correlations encountered in spatial models.Comment: 33 pages, 20 figures (the supplementary materials are included as appendices

    Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution

    Full text link
    A birth-death process is a continuous-time Markov chain that counts the number of particles in a system over time. In the general process with nn current particles, a new particle is born with instantaneous rate λn\lambda_n and a particle dies with instantaneous rate μn\mu_n. Currently no robust and efficient method exists to evaluate the finite-time transition probabilities in a general birth-death process with arbitrary birth and death rates. In this paper, we first revisit the theory of continued fractions to obtain expressions for the Laplace transforms of these transition probabilities and make explicit an important derivation connecting transition probabilities and continued fractions. We then develop an efficient algorithm for computing these probabilities that analyzes the error associated with approximations in the method. We demonstrate that this error-controlled method agrees with known solutions and outperforms previous approaches to computing these probabilities. Finally, we apply our novel method to several important problems in ecology, evolution, and genetics

    Phylogeography of Japanese encephalitis virus:genotype is associated with climate

    Get PDF
    The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate

    Ranitidine Use and Incident Cancer in a Multinational Cohort

    Get PDF
    Importance: Ranitidine, the most widely used histamine-2 receptor antagonist (H2RA), was withdrawn because of N-nitrosodimethylamine impurity in 2020. Given the worldwide exposure to this drug, the potential risk of cancer development associated with the intake of known carcinogens is an important epidemiological concern. Objective: To examine the comparative risk of cancer associated with the use of ranitidine vs other H2RAs. Design, Setting, and Participants: This new-user active comparator international network cohort study was conducted using 3 health claims and 9 electronic health record databases from the US, the United Kingdom, Germany, Spain, France, South Korea, and Taiwan. Large-scale propensity score (PS) matching was used to minimize confounding of the observed covariates with negative control outcomes. Empirical calibration was performed to account for unobserved confounding. All databases were mapped to a common data model. Database-specific estimates were combined using random-effects meta-analysis. Participants included individuals aged at least 20 years with no history of cancer who used H2RAs for more than 30 days from January 1986 to December 2020, with a 1-year washout period. Data were analyzed from April to September 2021. Exposure: The main exposure was use of ranitidine vs other H2RAs (famotidine, lafutidine, nizatidine, and roxatidine). Main Outcomes and Measures: The primary outcome was incidence of any cancer, except nonmelanoma skin cancer. Secondary outcomes included all cancer except thyroid cancer, 16 cancer subtypes, and all-cause mortality. Results: Among 1 183 999 individuals in 11 databases, 909 168 individuals (mean age, 56.1 years; 507 316 [55.8%] women) were identified as new users of ranitidine, and 274 831 individuals (mean age, 58.0 years; 145 935 [53.1%] women) were identified as new users of other H2RAs. Crude incidence rates of cancer were 14.30 events per 1000 person-years (PYs) in ranitidine users and 15.03 events per 1000 PYs among other H2RA users. After PS matching, cancer risk was similar in ranitidine compared with other H2RA users (incidence, 15.92 events per 1000 PYs vs 15.65 events per 1000 PYs; calibrated meta-analytic hazard ratio, 1.04; 95% CI, 0.97-1.12). No significant associations were found between ranitidine use and any secondary outcomes after calibration. Conclusions and Relevance: In this cohort study, ranitidine use was not associated with an increased risk of cancer compared with the use of other H2RAs. Further research is needed on the long-term association of ranitidine with cancer development.</p
    corecore