
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simultaneously reconstructing viral cross-species transmission
history and identifying the underlying constraints

Citation for published version:
Faria, NR, Suchard, MA, Rambaut, A, Streicker, DG & Lemey, P 2013, 'Simultaneously reconstructing viral
cross-species transmission history and identifying the underlying constraints' Philosophical Transactions of
the Royal Society B: Biological Sciences, vol 368, no. 1614, 20120196, pp. -., 10.1098/rstb.2012.0196

Digital Object Identifier (DOI):
10.1098/rstb.2012.0196

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Philosophical Transactions of the Royal Society B: Biological Sciences

Publisher Rights Statement:
Free in PMC.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/28970858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1098/rstb.2012.0196
http://www.research.ed.ac.uk/portal/en/publications/simultaneously-reconstructing-viral-crossspecies-transmission-history-and-identifying-the-underlying-constraints(eb0ca479-d373-412b-90eb-d0e2ff61abb2).html


Simultaneously reconstructing viral cross-species transmission
history and identifying the underlying constraints

Nuno Rodrigues Faria*,a, Marc A Suchardb,c,d, Andrew Rambaute,f, Daniel G Streickerg, and
Philippe Lemeya

aDepartment of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
bDepartment of Biomathematics, David Geffen School of Medicine at UCLA, University of
California, Los Angeles, USA
cDepartment of Human Genetics, David Geffen School of Medicine at UCLA, University of
California, Los Angeles, USA
dDepartment of Biostatistics, UCLA School of Public Health, University of California, Los Angeles,
USA
eInstitute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
fFogarty International Center, National Institutes of Health, Bethesda, MD, USA
gOdum School of Ecology, University of Georgia, Athens, USA

Abstract
The factors that determine the origin and fate of cross-species transmission events remain unclear
for the majority of human pathogens despite being central for the development of predictive
models and assessing the efficacy of prevention strategies. Here, we describe a flexible Bayesian
statistical framework to reconstruct virus transmission between different host species based on
viral gene sequences while simultaneously testing and estimating the contribution of several
potential predictors of cross-species transmission. Specifically, we employ a generalized linear
model extension of phylogenetic diffusion to perform Bayesian model averaging over candidate
predictors. By further extending this model with branch partitioning, we allow for distinct host
transition processes on external and internal branches, thus discriminating between recent cross-
species transmissions, many of which are likely to result in dead-end infections, and host shifts
that reflect successful onwards transmission in the new host species. Our approach corroborates
genetic distance between hosts as a key determinant of both host shifts and cross-species
transmissions of rabies virus in North American bats. Furthermore, our results indicate that
geographical range overlap is a modest predictor for cross-species transmission but not for host
shifts. Although our evolutionary framework focused on the multi-host reservoir dynamics of bat
rabies virus, it is applicable to other pathogens and to other discrete state transition processes.
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†Electronic Supplementary Information (ESI) available: XML file using branch partitioning GLM.
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BSSVS: Bayesian Stochastic Search Variable Selection, BP: branch partitioning, BF: Bayes Factor, GTR: General Time Reversible,
BCI: Bayesian Credible Interval, cES: Conditional Effective Size
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1 INTRODUCTION
Many devastating infectious diseases have emerged from zoonotic viruses that have
successfully jumped the ecological and evolutionary species barriers to generate sustained
epidemics1. Jumps of viruses from their natural reservoirs can, however, have a range of
distinct outcomes. Cross-species transmissions (CSTs) may trigger major epidemics such as
those caused by HIV/AIDS, influenza type A virus and SARS coronavirus. Conversely,
infections caused by CST can result in little or no onwards transmission in the recipient
species, such as in Ebola virus and rabies virus infection in humans2. Although an
understanding of the factors underlying the initial stages of viral emergence is central to
public health strategies3,4, these remain poorly understood for most important human
pathogens.

As a multi-host pathogen that persists in independent cycles in numerous mammalian
reservoir species5,6, rabies provides an ideal candidate model to investigate cross-species
transmission dynamics at its earliest phases. Rabies is also one of the best studied zoonotic
pathogens7-9, and its epidemic and evolutionary dynamics have frequently been explored
using viral genetic data10-12. In North American bat species, rabies establishes different
host-associated lineages through a process of frequent CST, mostly resulting in dead-end
infections (CST spillover), but occasionally leading to successful and preferential
transmission in the new host species (host shifts)13. A key question that naturally arises from
this observation concerns the determinants underlying different stages of the cross-species
transmission dynamics: what factors govern the process of CST and host shifts of the virus?
This has recently been addressed by a population genetic study of a comprehensive set of
rabies virus gene sequences from distinct bat species, which demonstrated that lower
degrees of host divergence between different species increase the chances of CST spillover
and historical host shifts5. To a lesser extent, range overlap also played a role in the CST
dynamics. So, despite the tremendous evolutionary potential that is generally ascribed to
rapidly evolving viruses, which has sometimes led to the expectation that CST will be
limited by ecological boundaries4,14, CST is mainly restricted by host divergence in North
American bat rabies populations.

The phylogenetic structuring into host-associated lineages, each maintained by a dominant
bat species (cfr. figure 1), allowed Streicker et al. (2010)5 to use an operational definition of
host shifts and CST: while inferred changes in host in the ancestral history between these
lineages reflects host shifting, viral jumps between the dominant host and other bat species
within each lineage were considered to represent CST. To quantify rabies CST, Streicker et
al. (2010)5 applied a structured population genetics approach to viral sequence subsets for
pairs of host species. For each pair of species that was infected by a common viral lineage,
different hypotheses of CST directionality were tested and estimates for the migration rate
βij from bat species i to j were obtained using Migrate15. These migration rates were
subsequently used to calculate per capita CST rates (Rij), which can be interpreted as the
expected number of infections in bat species i resulting from a single infected individual
from species j, based on Ri j = βij × θj × τ−1, where θj represents an estimate of the genetic
diversity for the viral population in bat species j and τ is the generation time. The latter is
the sum of the incubation and infectious periods and taken to be 29 days based on controlled
infection studies in insectivorous bats16. Finally, several factors were assessed as potential
predictors for the Rij estimates using standard generalized linear model (GLM) testing. Not
only does this procedure require a series of population genetic analyses on subsets of viral
sequence data, but also the considerable uncertainty that is generally associated with such
estimation is necessarily ignored prior to statistical assessment. Although CST was the
primary focus of the study by Streicker et al. (2010)5, the authors also explored host shifts
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using a phylogenetic diffusion approach17 and found some support for a correlation between
host shifting and phylogenetic similarity between the hosts.

Here, we advance the application of phylogenetic diffusion models to processes of host
transitioning and describe a flexible Bayesian statistical framework to reconstruct virus
transmission between different host species while simultaneously testing and quantifying the
contribution of multiple ecological and evolutionary drivers of both CST spillover and host
shifting. For this purpose, we parameterize the infinitesimal rates of a stochastic discrete
diffusion process as a generalized linear model (GLM) and perform Bayesian model
averaging over several potential predictors of viral dispersal among host species. To
discriminate between dead-end infection and sustained transmission in the new recipient
species, we extend the diffusion approach to allow for a different host transition process on
external and internal branches. Because understanding viral distributions within host ranges
is important for anticipating emergence and developing appropriate strategies for
prevention7,10, we use a separate GLM diffusion model to identify potential predictors of
viral spread in geographic space.

Finally, we demonstrate how a Bayesian stochastic search variable selection procedure is
able to estimate the connectivity in terms of viral transmission among host species while
Markov jump counts quantify the transmission intensity along these connections. We
compare these estimates to per capita CST rates represented in a transmission network5,
which were obtained by the pairwise population genetic estimation procedure.

2 METHODS
2.1 Genetic and epidemiological data

Host species, spatial locations and sampling collection year were annotated for 372
nucleoprotein gene sequences (nucleotide positions: 594 to 1353). This data comprised a
total of 17 bat species sampled between 1997 until 2006 across 14 states in the United
States5. Two additional species that had been excluded from the original analysis due to a
limited amount of available sequences, Myotis austroriparius (Ma) and Parastrellus hesperus
(Ph), were now included. We also included a virus sequence with an unknown sampling date
(accession no. TX5275), sampled in Texas from Lasiurus borealis, and estimate its sampling
date18.

For the predictors of cross-species transmission, we considered phylogenetic distances
between bat species, geographic range overlap, ecological similarities in roost structures,
wing aspect ratio, wing loading capacity and similarities in body sizes [described in detail in
Streicker et al. (2010)5]. Geographic range overlap was estimated as the percentage of
overlap between the geographical range occupied by the recipient and donor species. Wing
aspect ratio is defined as the ratio of the length of the wing to the width of the wing. Wing
loading capacity is defined as the weight of a bat species divided by the area of the wings (in
units of Kg per square meter). To relate the overlap of roost structures among all species, a
binary matrix was used.

To test different determinants of viral dispersal between localities we considered three
distinct predictors: great-circle distances between each pair of locations (taken as the
centroid of the county where each bat species was found), the number of rabies virus cases
in bats in each of the relevant US states during 201019 (a crude proxy for population size in
the absence of such numbers for each bat species), and the geographic area in square
kilometers of each federate state.
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2.2 Generalized linear model diffusion and branch partitioning
We model CST spillover and host shifting in the rabies virus evolutionary history as a
stochastic diffusion process among a set of discrete states (in this case, bat species) in a
Bayesian framework. This approach uses a continuous-time Markov chain (CTMC) to
model discrete outcomes as a continuous function of time in temporally-calibrated
phylogenetic trees and has been introduced for phylogeographic estimation in which case
locations make up the discrete states17. In our host transition application, we can represent
the Markov process as a directed graph of host states among which viruses are transmitted.
The rates or intensities at which viruses transition among pairs of hosts are typically denoted
as the ij-th elements (Λij) of a transition rate matrix Λ. Standard Bayesian inference under
this model, including a parametrization that aims to infer a sparse transition matrix through
Bayesian stochastic search variable selection (BSSVS), has been described in Lemey et al.
(2009)17.

To test predictors for the CTMC transition rates among pairs of hosts (Λij), we use a recent
extension of the phylogenetic diffusion model that parameterizes these rates as a log-linear
function of an arbitrary number of predictors (20). Briefly, this generalized linear model
(GLM) specifies coefficients (βi) for each predictor pi, allowing the estimation of their
contribution to the diffusion process, as well as (0,1)-indicator variables (δi) to model the
inclusion or exclusion of each predictor, such that the following relationship holds:

(1)

for each Λij and the n predictors.

By considering the potential contribution of all predictors simultaneously and jointly
estimating both their importance (δi) and relative size (βi), we efficiently perform Bayesian
model averaging over all potential predictors for the discretized host transitioning process
while simultaneously reconstructing this process. Lemey et al. (2012)20 discuss a
Metropolis-Hastings transition kernel for β = (β1,…,βn) that exploits the fixed correlation
structure between predictors. We also refer to Drummond and Suchard (2010)21 for a
transition kernel on δ = (δ1,…,δn). Based on the prior and posterior expectation for δi,
which can be considered as the inclusion probability for a predictor pi, the support for each
predictor can be expressed as a Bayes factor20.

Here, we extend the phylogenetic diffusion model, including the GLM parameterization, by
allowing a different transition process on external (Λext) and internal (Λint) branches in
order to discriminate between recent cross-species transmissions, many of which are likely
to result in dead-end infections, and host shifts deeper in the evolutionary history that reflect
successful onwards transmission in the new host species.

We follow standard phylogenetic practice in Bayesian inference by sharing evolutionary
models among all branches throughout the evolutionary history, except for the GLM specific
parameters (Λext and Λint) including the effect sizes (βext and βint) for the predictors and the
indicator variables (δext and δint) that determine the inclusion of these predictors.

All predictors were log transformed and standardized, except for the overlap of roost
structures, which was coded as a vector of binary indicators for sharing or not sharing roost
structures (XML available as ESI†).

While the external/internal GLM branch partitioning (BP) was used to investigate predictors
of CST and host shifts, we apply this partitioning simultaneously with a separate
homogeneous GLM diffusion model20 to investigate predictors of spatial diffusion.
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2.3 BEAST with BEAGLE inference
Discrete phylogenetic diffusion analyses were performed under an asymmetric diffusion
model22 using Markov chain Monte Carlo (MCMC) implemented in BEAST v.1.723. Two
chains of 2.5 × 108 steps, sub-sampled every 50,000th generation were combined after
discarding 10% of the generations from each as burn-in. Analyses were performed under a
General Time Reversible (GTR) nucleotide substitution model, with 4Γ rate categories and a
proportion I of invariant sites and using a flexible Bayesian skyride demographic prior24 and
an uncorrelated lognormal relaxed molecular clock25. A BSSVS procedure was used to
identify significant pathways of host and spatial diffusion17. As a measure of statistical
support for rates between discrete traits, e.g. host species or spatial locations, the BSSVS
approach delivers a Bayes factor (BF) test by comparing the posterior to the prior odds that a
particular rate is required to explain the diffusion process17. We follow standard
terminology in BF interpretation26, in which the strenght of evidence for a particular rate is
substantial when BF>3, strong if BF>10, very strong if BF>30 and decisive if BF>100. In
addition to estimating support for diffusion pathways, we also used a robust counting
procedure12,27 to estimate the posterior expectations of the number of host transitions
(Markov jumps) along the branches of the unknown tree28. Convergence of the MCMC
output was inspected using Tracer and a maximum clade credibility tree was summarized
using TreeAnnotator and visualized using FigTree graphical user-interface (available at
http://tree.bio.ed.ac.uk/). All analyses were performed using the BEAGLE library to enhance
computation speed29,30.

3 RESULTS
3.1 Determinants of cross-species transmission spillover and host shifts in the bat rabies
virus evolutionary history

We analyze a heterochronous dataset comprising 372 nucleoprotein gene sequences sampled
from 17 bat species using a full probabilistic model that encompasses components of timed
sequence evolution, hosts transitioning and spatial dispersal. As an illustration of the former,
our Bayesian inference procedure arrives at an estimate of the bat virus nucleoprotein gene
evolutionary rate of 2.77×10−4 (95% Bayesian Credible Interval, BCI: 1.25×10−4 to
4.32×10−4) substitutions per site per year, and a most recent common ancestor of bat rabies
in North America dated back to 1631 (95% BCI: 1353 to 1847) (figure 1).

To identify the factors that determine CST spillover and its fate in the new host, we first
adopted a recently developed generalized linear model (GLM) extension of a Bayesian
phylogenetic diffusion model that has been introduced in a phylogeographic context20. Here,
we refer to this as the ‘homogeneous GLM diffusion model’ and employ this to
simultaneously reconstruct host transition processes in the entire viral evolutionary history
while identifying the variables that contribute significantly to this process. We follow
Streicker et al. (2010)5 and consider host genetic distance, geographic range overlap, and
similarities in roost structures, wing aspect ratio, wing loading and body size as potential
predictors of the host diffusion process.

Figure 2 lists BF support for each predictor as well as the conditional effect sizes (cES) on a
log scale; the latter summarizes the coefficients conditional on the predictor being included
in the GLM model (βi|δi = 1). The negative conditional cES obtained using the
homogeneous GLM diffusion model (open squares) for host distance [−1.21 (95%BCI:
−1.64, −0.85)] imply that lower genetic distances between host species are predictive of
higher rates of viral host jumping with a decisive statistical support (BF=7974). Conversely,
coefficients above zero indicate a positive correlation between the intensity of viral host
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jumping and the extent of geographical range overlap [ES =1.03 (95%BCI: 0.28, 1.96)],
albeit with only a modest support (BF=4.45).

To further discriminate between recent CSTs and successfully established host shifts that
reflect onwards transmission in the new host species, we extend the phylogenetic diffusion
approach in BEAST to allow for a separate discrete diffusion process on both internal and
external branches in the phylogeny. This branch partitioning allows the separation of recent
CST, which likely represent evolutionary dead-ends in the new host species as expected
from the typical short terminal branch length of such tips5, from historical host shifts that
occurred deeper in the evolutionary history.

The branch-partitioned GLM diffusion model reveals that genetic distance between hosts is
a strong predictor for both CST spillover and historical host shifts (figure 2). This is
corroborated by the decisive BF rates obtained for host genetic similarity using both the
internal branch GLM (BF=3374) and the external branch GLM (BF=27.04). In the two
cases, we also obtain cES estimates close to −1 [−0.82 (95%BCI: −1.14, −0.52) and −0.78
(95%BCI: −1.10, −0.40), respectively]. For geographical range overlap, we obtain moderate
support (BF=7.24) and a positive conditional effect size of 1.03 with credible intervals that
exclude zero (0.28, 1.96) for the external branches. However, we did not find support for an
impact of geographical range overlap in host shifting [BF=0.16 and cES estimates of 0.29
(95%BCI: −0.63, 1.80)]. Taken together, the results obtained using the branch-partitioned
GLM diffusion model strongly support that the intensity of both recent CST and historical
host shifts is predicted by host genetic similarity, and for recent CST this implies that merely
establishing an infection of a single individual of a naïve host species may depend on its
genetic relatedness to the donor bat species even if this results in a dead-end infection.
Moreover, our results also show that some degree of geographical range overlap is required
for recent CST spillover, but it is not a significant predictor of established host shifts.

In agreement with previous findings5, our analysis did not reveal a significant role for roost
structures, wing aspect ratio, wing loading and body size, which represent ecological
predictors in our GLM approach.

3.2 Determinants of spatial dispersal
We further explore the application of a homogeneous GLM diffusion model20 to identify
possible predictors of viral dispersal among the 14 states in the US. This was done
simultaneously with the host jump inference, and further illustrates the flexibility of our
approach in incorporating different data types in a single probabilistic framework. Our
results indicate a key role of spatial distance in viral spread between spatial localities
[BF=6516, with a cES of −1.14 (95% BCI: −1.43, −0.86)] (figure 3). This provides decisive
support for the the notion that viral dispersal occurs mostly between closely located regions
rather than through long distance dispersal, despite the mobility of some bat species. Such
knowledge may be useful to take into account in phylogeographic inferences that necessarily
operate on sparse data. Furthermore, our analysis did not reveal evidence for the predictive
role of the number of rabies cases or the geographical area of each of the US states
considered.

3.3 Transmission connectivity and magnitude of host transitioning
Based on a series of structured coalescent analyses of viral migration among pairs of host
species, Streicker et al. (2010)5 quantified per capita transmission rates and represented
these in a ‘transmission web’ network. The species pairs considered for this network
consisted of each combination of major bat host species associated with a viral lineage and
the assumed recipient species in these lineages. Therefore, the connectivity only represents
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the CST dynamics implied within the host-associated lineages; the viral transmission along
these connections is an estimated quantity obtained by genealogy-based population genetic
inference.

Here, we first attempt to capture the connectivity among bat species using a BSSVS
procedure under an asymmetric model of host diffusion17. In this case, the connectivity is
estimated by identifying highly supported host transition rates without conditioning on the
observation of host-associated lineages. This procedure considers the complete viral
evolutionary history and not only the host pairs involved in CST.

Figure 4 a shows the rates that were supported by a relatively strong BF support (BF > 10).
The BSSVS procedure identifies support for a total of 19 host transition rates, while a total
of 31 CST connections were implied by the transmission web in Streicker et al. (2010)5.
Fifteen out of the 19 well-supported rates (80%) are represented by connections in the
previously published transmission web. The four additional host-transitioning rates inferred
with strong support by our approach (starred arrows in figure 4 a) may reflect host jumps
ancestral to the host-associated lineages or more subtle CST dynamics within those lineages.
An example of the latter is the host transition rate from Lx to Ap species which is supported
in our analysis by a BF of 28.5. A close inspection of our MCC tree shows that within the Lc
associated lineage, the discrete diffusion approach reconstructs a transmission from species
Lc to Lx and then subsequently from Lx to Ap, instead of the transition from Lc to Ap
inferred in the original analysis5. Similar scenarios can be identified for the other additional
rates. Because Streicker et al. (2010)5 considers the Lc species to be the major host
associated with this lineage, and as a consequence, Lx and Ap to be recipient species within
this lineage, transmission to potentially intermediate hosts as Lx are not represented by
connections in the transmission web. The existence of such intermediate hosts is particularly
plausible when the two spillover hosts are found in the same geographical region in the same
time frame. This is the case for at least Lbl and Mc5. Another possible explanation is that
local dynamics within the reservoir species lead to multiple CSTs, while by chance the
reservoir host is not sampled and thus the two recent spillover hosts seem very closely
related. Our connectivity inference does not question the assumptions of major host species
being associated with different viral lineages, but simply demonstrates that CSTs additional
to those from these major host species cannot always be excluded by the data.

When the BF cut-off was lowered to a moderate support of 5, our connectivity approach
identifies support for a total of 31 host transitioning rates, with 20 of these well-supported
rates (65%) being represented in the CST transmission web5. The decrease in consistency
with the previous CST transmission web5 can be explained by the fact that a lower BF
invokes many more uncertain rates that yield less convincing support for their involvement
in CST, and also rates involved with ancestral host shifts may become more prominent
under lower cut-offs.

While the BSSVS procedure delivers the statistical support for particular host transitions, it
does not provide a quantification of the magnitude of these host transitions. For the latter,
we employ Markov jump estimations based on robust counting techniques12,27,28 and
summarize the expected number of jumps along the connectivity identified by BSSVS in
figure 4b. It is interesting to note that not all the strongly supported BF rates actually
correspond to a high magnitude in host transition rates. For example, while we obtain a very
strong BF support of 97 for the host jump between Tb and Ef, we estimate only a mean of 1
Markov jump between these hosts. Conversely, we estimate 3 Markov jumps from Lc to Ef,
but with a BF support of 12 for this connection.
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4 DISCUSSION
In this study, we present a flexible phylogenetic diffusion approach as an alternative to
coalescent estimation for investigating cross-species transmission and host switching based
on viral genetic data. Phylogenetic diffusion models are now frequently being used for
phylogeographic analyses31, but also the inference of host jumping has become of
interest32,33. The most important contribution of the current work is the extension of a GLM
diffusion model that allows the inference of the discrete state transition history while
simultaneously identifying the underlying predictors. The GLM diffusion model avoids
post-hoc statistical analyses of genetic estimates, which generally involves operating on
mean estimates and ignores associated uncertainty that can be considerably large. The
Bayesian inference approach enables model averaging over a number of potential diffusion
predictors and estimates the support and contribution of each predictor while marginalizing
over phylogenetic history. Our results based on a homogeneous GLM diffusion approach
corroborate that host genetic distances and, at a lesser extent, geographical range overlap
pose important constraints for rabies cross-species transmission5.

Importantly, we extend the phylogenetic diffusion approach to allow for different processes,
in the form of different CTMC matrices, for different branch sets in the phylogeny. In the
case of rabies transmission, we use this to separate out and test the determinants of host
transitioning on both external and internal branches, which respectively reflect CST
spillover and historical shifts among various bat hosts. We believe that the branch
partitioning represents an important extension of the phylogenetic diffusion approach in
order to distinguish two crucial stages in viral emergence. Whereas the determinants of CST
had been scrutinized by estimating per capita rate estimates and subsequently testing these
using a standard GLM approach, a similar test procedure was not available for ancestral host
jumps5.

However, external and internal branch partitioning only serves as an approximation to
discriminate between CST and ancestral host jumps. Reassuringly, the rabies phylogeny is
generally characterized by very short tips (cfr. figure 1), and Streicker et al (2010)5 showed
that they were no more genetically divergent than donor lineage viruses. This suggested that
external branches of the rabies phylogeny most likely represented dead-end infections than
infections occurring within stuttering chains of transmission in the recipient species, that is,
chains that will propagate for a few generations in the new host species before dying out.
However, this does not formally rule out the possibility of stuttering chains along the
external branches. Stuttering chains of human-to-human transmission of H5N1 avian
influenza provide and example for this34. Importantly, host shifts at internal branches that
are phylogenetically close to the external branches can also correspond to such stuttering
chains of transmission. Thus, an absolute phylogenetic distinction in terms of the outcome of
CST remains difficult. The external/internal branch partitioning essentially offers an
operational prior distinction between jumps leading to generally ‘less’ and ‘more’ successful
propagation in the new host. Further work may be aimed at methodology, perhaps in the
form of mixture models, to provide better posterior classifications in terms of the outcome of
host jumps in the phylogeny.

The observation that host genetic distances represent important constraints for both CST
spillover and host shifts is not a standalone finding. The ability of sigma viruses to persist
and replicate in Drosophila species has also been explained by the host phylogeny, with viral
titers declining with increasing distance from the reservoir species35. For fungal pathogens
infecting plants, a similar relation was found between phylogenetic distance between the
plant host and the likelihood of infection36. More generally, the idea that phylogenetically
similar species exchange viruses with higher probability of success has been well
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acknowledged in the field of pathogen emergence3,37,38. However, in very few cases has it
been possible to isolate at which stage of a host shift such barriers may act. The strength of
the current approach and Streicker et al. (2010)5 is the ability to demonstrate phylogenetic
barriers at two stages: emergence and establishment. Although the findings by Londgon et
al. (2011)35 in Drosophila sigma viruses are consistent with this scenario, the generality of
this phenomenon remains to be investigated in other systems. Our results also confirm that
geographical range overlap is a modest, but non-negligible, predictor of CST spillover. For
viral host jumps to result in onwards transmission to the recipient species, initial exposure of
the new host species to the pathogen is required2. For example, ecological opportunity,
determined by ecological changes driven by the process of economic development and land
use, have previously been implicated as a determinant of successful CST from animal
reservoir species to humans3,39,40.

The fact that geographical range overlap is apparently not required to explain the host shift
diffusion process could have many explanations. First, it may reflect the ability of some bat
species to fly long distances during seasonal migrations41. However, our spatial analyses
revealed that closer geographical distances are predictive of higher viral migration rates,
suggesting that viral transmission occurs predominantly at a local scale. Although the
BSSVS analysis identified support for viral migration between exceptionally distant spatial
locations which could possibly be related with host migration (not shown), the finding that
geographic distances and genetic distances are correlated has also been shown for fox and
raccoon rabies virus10,11. Second, the currently observed range overlap for bat species may
not have remained constant throughout bat rabies evolutionary history, which dates back
several centuries for the current sample according to the divergence date estimates. Our
estimates of the time of rabies evolutionary history in North America are in reasonable
agreement with previous estimates13,42, but even the estimates of a relatively long-standing
rabies transmission dynamics may represent only a small part of the history of rabies in
North America because the common ancestor of modern viral strains does not necessarily
extend back to the origin of the virus43. Third, there could be missing lineages in the tree
(undiscovered viruses), and some inferred host shifts may actually have involved different
donor species. Fourth, it is plausible that the relatively limited number of host shifts on
internal branches yields less power to inform a GLM model applied to this branch set.
Finally, and since the ranges of most bat species used for this analysis do overlap, it would
be interesting to revisit the extent of range overlap as a predictor of CST and host shifts
when larger datasets from other geographical locations become available.

In general, we cannot rule out the lack of power to explain lack of support for particular
diffusion predictors, such as ecological predictors for CST (roost structures, wing aspect
ratio, wing loading and body size). Phylogenetic diffusion models inevitably operate on
sparse data, and while the GLM approach model generally has much fewer parameters than
a standard diffusion model, it remains uncertain whether all factors contributing to the
historical diffusion process can be inferred from the distribution of host or their locations at
the tips of a phylogeny. In addition, sample sizes may affect the GLM parameter estimates
and we cannot exclude that predictors other than the ones we specified might be involved
with host transitioning or spatial dispersal. For example, spatial diffusion might be predicted
by bat population sizes but the number of rabies cases per state used in this study might be a
too crude proxy for population size.

The summary of per capita transmission rates in the ‘transmission web’ differs in many
aspects from our phylogenetic diffusion approach and a direct comparison is therefore
difficult to make. Whereas the connectivity in the previously constructed transmission web
is hypothesized based on the interpretation of CST within the host-associated lineages5, our
Bayesian phylogenetic diffusion approach attempts to estimate this connectivity, and
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because it considers the entire phylogenetic history, the connectivity estimate may also
represent ancestral host jumps. In addition to measuring statistical support for host jumps
between pairs of species, we also estimate the number of jumps along a set of strongly
supported host transition pairs using robust counting techniques. A comparison of BF
support for rates of diffusion (figure 4a) and posterior estimates of the number of jumps
(figure 4b) indicates that high support for connectivity does not necessarily translate into a
consistently high intensity of jumps. We note that this may also be important to bear in mind
when interpreting phylogeographic applications of the discrete diffusion models and
BSSVS, where a well-supported rate may for example be represented by only one migration
event as long that is clearly evident from the data. The distinction between support and
magnitude is one that we also make in our GLM model, through effect sizes and indicators,
and can be important when predictors exist on different scales. As a quantification of the
magnitude of host transitioning among only strongly supported rates, the robust counting
procedure should produce estimates that are more comparable to the population genetic
migration rates estimated by Streicker et al. (2010)5. In this respect, it is interesting to note
that the three pairs of bat species exhibiting the highest number of host transitions (species
Mc and Ml, Lc and Lx, and Lb and Ls), are consistent with the population genetic
estimates5. We note however that population genetic estimates are more appropriate than
phylogenetic transition estimates to approximate per capita CST rates because the former
adequately takes into account the ‘genetic size’ of the donor and recipient hosts of rabies
transmission.

The work on rabies cross-species transmission in North American bats species has recently
been extended by an investigation of evolutionary rate shifts associated with ancestral host
shifts42. Based on a phylogenetic analysis using the same Bayesian software in which we
implemented our discrete diffusion models, Streicker et al. (2010)42 demonstrate that rabies
lineages associated with subtropical bat populations evolve nearly four times faster than
those associated with temperate species. To find statistical evidence for this, the authors
adopted hierarchical phylogenetic model (HPM) methodology44 and incorporate fixed
effects to allow to test differences in the evolutionary rate estimate for different groups of
viral lineages (e.g., grouped according to host geography42). Although the fixed-effect HPM
model and the discrete GLM-diffusion model are very different approaches, performing
Bayesian estimation for these models relies on similar inference methodology because the
fixed effects in the HPM are also specified through coefficients that quantify the effect size
and effect indicators that represent the inclusion probability or support.

5 CONCLUSION
In conclusion, the development and extension of a flexible approach to reconstruct discrete
state transition processes while simultaneously identifying their determinants provides an
useful framework to scrutinize CST and host shifts. The identification of risk factors that
control or influence host transitioning may have important implications in the prediction,
surveillance and control of new epidemic diseases4. We believe that the rabies example
presented here makes a substantive contribution to this discussion.

Although we focused on multi-host reservoir dynamics of bat rabies virus, this approach is
generally applicable to other pathogens and to other discrete state transition processes
beyond spatial or host diffusion such as, for instances, viral diffusion between body organs
and tissues. We hope that this framework will be useful to understand the key drivers of
cross species dynamics for a broad range of zoonotic pathogens.
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Fig. 1.
Time-calibrated maximum clade credibility (MCC) tree inferred for 372 nucleoprotein gene
sequences sampled from 17 bat species. Branches were coloured according to most probable
host species, indicated in the color legend. Ap=Antrozous pallidus, Ef=Eptesicus fuscus,
Lb=Lasiurus borealis, Lbl=Lasiurus blossevillii, Lc=Lasiurus cinereus, Li=Lasiurus
intermedius, Ln=Lasionycteris noctivagans, Ls=Lasiurus seminolus, Lx=Lasiurus xanthinus,
Ma=Myotis austroriparious, Mc=Myotis californicus complex, Ml=Myotis lucifugus
complex, My=Myotis yumanensis, Nh=Nycticeius humeralis, Ph=Parastrellus hesperus,
Ps=Perimyotis subflavus, Tb=Tadarida brasiliensis.
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Fig. 2.
Predictors of CST spillover and historical host shifts for bat rabies virus sampled in North
America. For each potential predictor, the Bayes factor (BF) support and the conditional
effect sizes (cES) obtained using a homogeneous (squares) and a branch-partitioned GLM
diffusion approach (circles) implemented in BEAST are shown (posterior mean and 95%
BCI). The contribution of external (related to CST spillover) and internal (historical host
shifts) branch substitution processes is shown separately using empty and filled circles
respectively. Note that the confidence intervals for the cES of the predictors with BF above
3 exclude zero, which can be considered as an additional indication for its importance.
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Fig. 3.
Determinants of geographical dispersal for bat rabies virus in North America. For each
potential predictor, the Bayes factor (BF) support and the conditional effect size estimate
obtained using a homogeneous GLM diffusion approach are shown (mean and 95% BCI).
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Fig. 4.
Connectivity and magnitude of host transitioning between bat species. In panel A, the width
of host transition rate reflects its statistical support in terms of Bayes factor (BF). Only host
transition rates supported by a strong BF>10 and the species involved in these rates are
shown. In panel B, the width of the transitions between pairs of host species reflects the
magnitude of the strongly supported transition rates. Rates inferred by our homogenous
BSSVS diffusion approach that are not represented by corresponding connections in
Streicker et al. (2010)5 are denoted with asterisks. Pie charts in grey show the observed
proportion of each species infected by CST as implied within the host-associated lineages
and pie charts diameter is proportionate to the number sampled bats as in the original
transmission web5. The naming of the bat species is consistent with the legend of figure 1.
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