3,675 research outputs found

    Probing two topological surface bands of Sb2Te3 by spin-polarized photoemission spectroscopy

    Get PDF
    Using high resolution spin- and angle-resolved photoemission spectroscopy, we map the electronic structure and spin texture of the surface states of the topological insulator Sb2Te3. In combination with density functional calculations (DFT), we directly show that Sb2Te3 exhibits a partially occupied, single spin-Dirac cone around the Fermi energy, which is topologically protected. DFT obtains a spin polarization of the occupied Dirac cone states of 80-90%, which is in reasonable agreement with the experimental data after careful background subtraction. Furthermore, we observe a strongly spin-orbit split surface band at lower energy. This state is found at 0.8eV below the Fermi level at the gamma-point, disperses upwards, and disappears at about 0.4eV below the Fermi level into two different bulk bands. Along the gamma-K direction, the band is located within a spin-orbit gap. According to an argument given by Pendry and Gurman in 1975, such a gap must contain a surface state, if it is located away from the high symmetry points of the Brillouin zone. Thus, the novel spin-split state is protected by symmetry, too.Comment: 8 pages, 10 figure

    In vitro clonal propagation of locally cultivated pink colour Gladiolus var. Neelima through Cormel-sprout culture

    Get PDF
    Micropropagation provides an economic advantage for the propagation of a particular crop like gladiolus, a beautiful flowering plant which emits expression of love. Propagation by conventional method is a slow process and pathogen keep on accumulation generation after generation which reduces yield and quality of flower and also generates insufficient propagules. An efficient propagation system could overcome those variabilities and meet the increasing demand of propagules production for the growing of gladiolus in the country while it is an exporting plant in Bangladesh. Moreover, establishment of a plant regeneration system through direct organogenesis or via callus is also a prerequisite to further in vitro genetic manipulation of the cultivar. Demand for disease free planting materials is increasing day by day and crop like vegetatively propagated plant is an appropriate means to generate propagules through in vitro techniques. Production of sufficient numbers of plants of a unique genotype is possible using in vitro culture system. In this study, the effect of various concentrations and combinations of plant growth regulators for in vitro regeneration of gladiolus was described using cormel-sprout as explants. However, an efficient in vitro plant regeneration protocol in locally cultivated pink colour Gladiolus var. Neelima was established on MS media with various hormonal supplements using cormel-sprout as explants. Ninety (90) percent of the explants responded for shooting on 0.5 mg/L BA + 0.5 mg/L Kin within the culture initiation period of 90 days. The average number of shoot per explants was 8 ±1.20 and the average shoot length of 12.40 ±2.15 cm were observed in this medium. Shoots are rooted well when they were excised individually and implanted on half strength of MS medium supplemented with 1.0 mg/l IBA, in which 90% of the shoot induced roots. The average number of root per shoot was 10 ± 1.20 and the average root length of 8.50 ± 1.25 cm were observed in this medium after culture of 30 days. Eighty (80) percent of the in vitro raised plantlets were survived in the natural environment

    GASP XVIII: Star formation quenching due to AGN feedback in the central region of a jellyfish galaxy

    Get PDF
    We report evidence for star formation quenching in the central 8.6 kpc region of the jellyfish galaxy JO201 which hosts an active galactic nucleus, while undergoing strong ram pressure stripping. The ultraviolet imaging data of the galaxy disk reveal a region with reduced flux around the center of the galaxy and a horse shoe shaped region with enhanced flux in the outer disk. The characterization of the ionization regions based on emission line diagnostic diagrams shows that the region of reduced flux seen in the ultraviolet is within the AGN-dominated area. The CO J21_{2-1} map of the galaxy disk reveals a cavity in the central region. The image of the galaxy disk at redder wavelengths (9050-9250 \overset{\lower.5em\circ}{\mathrm{A}}) reveals the presence of a stellar bar. The star formation rate map of the galaxy disk shows that the star formation suppression in the cavity occurred in the last few 108^8 yr. We present several lines of evidence supporting the scenario that suppression of star formation in the central region of the disk is most likely due to the feedback from the AGN. The observations reported here make JO201 a unique case of AGN feedback and environmental effects suppressing star formation in a spiral galaxy.Comment: Author's accepted manuscrip

    Vaccine hesitancy toward the COVID-19 vaccine among the Malaysian population

    Get PDF
    COVID-19 is a potentially fatal infectious disease that requires effective vaccines to keep the outbreak under control. Despite the ongoing efforts for an effective vaccine, public hesitancy towards vaccines is now one of the main concerns to the global health in containing this global pandemic. Thus, this preliminary study was carried out to assess the degree of COVID-19 vaccine hesitancy among the general public in Malaysia and to identify the underlying reasons for their hesitancy by using 5C psychological antecedents of vaccination. This study was conducted by carrying out a cross-sectional online survey for approximately two months between January to February 2021, involving 385 participants. The survey contained questions based on the 5C model proffered by WHO. The data from the survey were analyzed using Smart PLS 3 for statistical analysis, with the partial least squares structural equation modeling (PLS-SEM). According to the findings, only 62.5 percent out of the 385 participants had planned to get the COVID-19 vaccine, while the remaining 37.5 percent did not. The results also showed that confidence, calculation, collective responsibility, and constraints had a significant influence on vaccine hesitancy but not complacency. There is a degree of vaccine hesitancy towards the COVID-19 vaccines among the Malaysian population, although the data that we have obtained cannot be used to generalize for the entire Malaysian population due to the small sample size. Thus, for the vaccination campaign to be more effective, it should focus more on addressing the issue relating to confidence, calculation, collective responsibility, and constraints and less on complacency

    Preliminary analysis of cryopreservation of Dendrobium Bobby Messina orchid using an encapsulation-dehydration technique with Evans blue assay

    Get PDF
    In vitro grown protocorm-like bodies (PLBs) of Dendrobium Bobby Messina hybrid were cryopreserved in liquid nitrogen (LN) at -196°C by an encapsulation-dehydration technique. PLBs (1 to 2 and 3 to 4 mm) were precultured in half strength semi-solid MS media supplemented with six different concentrations of sucrose (0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 M). The PLBs were then encapsulated to form the beads in halfstrength liquid MS media supplemented with different concentrations of sodium alginate (2.5, 3.0 and 3.5%). The beads were placed in 2 ml cryovials and plunged into LN for 24 h. The beads were then thawed in a 40°C water bath for 90 s and were placed in recovery media composed of half strength semisolid MS media supplemented with 2% sucrose for four days under dark condition. After 12 days, the Evans blue dye assay was carried out to determine the viability of the PLBs. The highest viability was found in 1 to 2mm PLBs precultured in half strength semi-solid MS media supplemented with 1.0 M sucrose and encapsulated in 2.5% sodium alginate. Biochemical content analyses (chlorophyll, total soluble protein and peroxidase activities) were done to investigate the physiological responses of the PLBs after cryopreservation.Key words: Orchid, protocorm-like bodies, Dendrobium Bobby Messina, encapsulation-dehydration

    Electrostatically gated membrane permeability in inorganic protocells

    Get PDF
    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization

    M31 Pixel Lensing PLAN Campaign: MACHO Lensing and Self Lensing Signals

    Get PDF
    We present the final analysis of the observational campaign carried out by the PLAN (Pixel Lensing Andromeda) collaboration to detect a dark matter signal in form of MACHOs through the microlensing effect. The campaign consists of about 1 month/year observations carried out during 4 years (2007-2010) at the 1.5m Cassini telescope in Loiano ("Astronomical Observatory of BOLOGNA", OAB) plus 10 days of data taken in 2010 at the 2m Himalayan Chandra Telescope (HCT) monitoring the central part of M31 (two fields of about 13'x12.6'). We establish a fully automated pipeline for the search and the characterization of microlensing flux variations: as a result we detect 3 microlensing candidates. We evaluate the expected signal through a full Monte Carlo simulation of the experiment completed by an analysis of the detection efficiency of our pipeline. We consider both "self lensing" and "MACHO lensing" lens populations, given by M31 stars and dark matter halo MACHOs, in the M31 and the Milky Way (MW), respectively. The total number of events is compatible with the expected self-lensing rate. Specifically, we evaluate an expected signal of about 2 self-lensing events. As for MACHO lensing, for full 0.5 (0.01) solar mass MACHO halos, our prediction is for about 4 (7) events. The comparatively small number of expected MACHO versus self lensing events, together with the small number statistics at disposal, do not enable us to put strong constraints on that population. Rather, the hypothesis, suggested by a previous analysis, on the MACHO nature of OAB-07-N2, one of the microlensing candidates, translates into a sizeable lower limit for the halo mass fraction in form of the would be MACHO population, f, of about 15% for 0.5 solar mass MACHOs.Comment: ApJ accepted, 13 pages, 5 figures, 2 table

    A High Gain DC-DC Converter with Grey Wolf Optimizer Based MPPT Algorithm for PV Fed BLDC Motor Drive

    Get PDF
    Photovoltaic (PV) water pumping systems are becoming popular these days. In PV water pumping, the role of the converter is most important, especially in the renewable energy-based PV systems case. This study focuses on one such application. In this proposed work, direct current (DC) based intermediate DC-DC power converter, i.e., a modified LUO (M-LUO) converter is used to extricate the availability of power in the high range from the PV array. The M-LUO converter is controlled efficiently by utilizing the Grey Wolf Optimizer (GWO)-based maximum power point tracking algorithm, which aids the smooth starting of a brushless DC (BLDC) motor. The voltage source inverter’s (VSI) fundamental switching frequency is achieved in the BLDC motor by electronic commutation. Hence, the occurrence of VSI losses due to a high switching frequency is eliminated. The GWO optimized algorithm is compared with the perturb and observe (P&O) and fuzzy logic based maximum power point tracking (MPPT) algorithms. However, by sensing the position of the rotor and comparing the reference speed with the actual speed, the speed of the BLDC motor is controlled by the proportional-integral (PI) controller. The recent advancement in motor drives based on distributed sources generates more demand for highly efficient permanent magnet (PM) motor drives, and this was the beginning of interest in BLDC motors. Thus, in this paper, the design of a high-gain boost converter optimized by a GWO algorithm is proposed to drive the BLDC-based pumping motor. The proposed work is simulated in MATLAB-SIMULINK, and the experimental results are verified using the dsPIC30F2010 controller

    An Efficient OpenMP Loop Scheduler for Irregular Applications on Large-Scale NUMA Machines

    Get PDF
    International audienceNowadays shared memory HPC platforms expose a large number of cores organized in a hierarchical way. Parallel application programmers strug- gle to express more and more fine-grain parallelism and to ensure locality on such NUMA platforms. Independent loops stand as a natural source of paral- lelism. Parallel environments like OpenMP provide ways of parallelizing them efficiently, but the achieved performance is closely related to the choice of pa- rameters like the granularity of work or the loop scheduler. Considering that both can depend on the target computer, the input data and the loop workload, the application programmer most of the time fails at designing both portable and ef- ficient implementations. We propose in this paper a new OpenMP loop scheduler, called adaptive, that dynamically adapts the granularity of work considering the underlying system state. Our scheduler is able to perform dynamic load balancing while taking memory affinity into account on NUMA architectures. Results show that adaptive outperforms state-of-the-art OpenMP loop schedulers on memory- bound irregular applications, while obtaining performance comparable to static on parallel loops with a regular workload

    Changes in the source and transport mechanism of terrigenous input to the Indian sector of southern ocean during the late quaternary and its palaeoceanographic implications

    Get PDF
    Changes in the terrigenous sediment source and transport mechanisms during the late Quaternary have been investigated using four sediment cores within the Indian sector of Southern Ocean, using the magnetic susceptibility (MS) and sedimentological records. Sediments deposited during the Holocene and other interglacial periods were characterised by low MS, low sand content, reduced ice-rafted detritus (IRD) input and increased illite possibly transported via hydrographic advection from the south. The glacial intervals are characterised by high MS, high sand content, increased IRD input and reduced illite clays, derived from both local as well as Antarctic sources. Significant reduction in clay fraction and illite content during glacials suggests that the erosive and transporting capabilities of the deep and bottom waters could have reduced compared to the interglacial times. The changes in terrigenous influx to this region were significantly influenced by the rhythmic glacial–interglacial fluctuations in bottom circulation and the position of the Polar Front
    corecore