182 research outputs found

    Geoengineered ocean vertical water exchange can accelerate global deoxygenation

    Get PDF
    Ocean deoxygenation is a threat to marine ecosystems. We evaluated the potential of two ocean intervention technologies, i.e. “artificial downwelling (AD)” and “artificial upwelling (AU)”, for remedying the expansion of Oxygen Deficient Zones (ODZs). The model‐based assessment simulated AD and AU implementations for 80 years along the eastern Pacific ODZ. When AD was simulated by pumping surface seawater to the 178 ~ 457 m depth range of the ODZ, vertically integrated oxygen increased by up to 4.5% in the deployment region. Pumping water from 457 m depth to the surface (i.e. AU), where it can equilibrate with the atmosphere, increased the vertically integrated oxygen by 1.03%. However, both simulated AD and AU increased biological production via enhanced nutrient supply to the sea surface, resulting in enhanced export production and subsequent aerobic remineralization also outside of the actual implementation region, and an ultimate net decline of global oceanic oxygen

    Methods of MicroRNA Promoter Prediction and Transcription Factor Mediated Regulatory Network

    Get PDF
    MicroRNAs (miRNAs) are short (~22 nucleotides) noncoding RNAs and disseminated throughout the genome, either in the intergenic regions or in the intronic sequences of protein-coding genes. MiRNAs have been proved to play important roles in regulating gene expression. Hence, understanding the transcriptional mechanism of miRNA genes is a very critical step to uncover the whole regulatory network. A number of miRNA promoter prediction models have been proposed in the past decade. This review summarized several most popular miRNA promoter prediction models which used genome sequence features, or other features, for example, histone markers, RNA Pol II binding sites, and nucleosome-free regions, achieved by high-throughput sequencing data. Some databases were described as resources for miRNA promoter information. We then performed comprehensive discussion on prediction and identification of transcription factor mediated microRNA regulatory networks

    Discovery of 21 New Changing-look AGNs in Northern Sky

    Full text link
    The rare case of changing-look (CL) AGNs, with the appearance or disappearance of broad Balmer emission lines within a few years, challenges our understanding of the AGN unified model. We present a sample of 21 new CL AGNs at 0.08<z<0.580.08<z<0.58, which doubles the number of such objects known to date. These new CL AGNs were discovered by several ways, from (1) repeat spectra in the SDSS, (2) repeat spectra in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and SDSS, and (3) photometric variability and new spectroscopic observations. We use the photometric data from surveys, including the SDSS imaging survey, the Pan-STARRS1, the DESI Legacy imaging survey, the Wide-field Infrared Survey Explorer (WISE), the Catalina Real-time Transient Survey, and the Palomar Transient Factory. The estimated upper limits of transition timescale of the CL AGNs in this sample spans from 0.9 to 13 years in the rest frame. The continuum flux in the optical and mid-infrared becomes brighter when the CL AGNs turn on, or vice versa. Variations of more than 0.2 mag in W1W1 band were detected in 15 CL AGNs during the transition. The optical and mid-infrared variability is not consistent with the scenario of variable obscuration in 10 CL AGNs at more than 3σ3\sigma confidence level. We confirm a bluer-when-brighter trend in the optical. However, the mid-infrared WISE colors W1W2W1-W2 become redder when the objects become brighter in the W1W1 band, possibly due to a stronger hot dust contribution in the W2W2 band when the AGN activity becomes stronger. The physical mechanism of type transition is important for understanding the evolution of AGNs.Comment: Accepted for publication in Ap

    Laser-Like Emission from a Sandwiched MoTe2 Heterostructure on a Silicon Single-Mode Resonator

    Get PDF
    Molybdenum ditelluride (MoTe2) has recently shown promise as a gain material for silicon photonics. Reliable single-mode operation and material stability remain two of the major issues that need to be addressed to advance this exciting technology, however. Here, laser-like emission from a sandwiched MoTe2 heterostructure on a silicon single-mode resonator is reported. The heterostructure consists of a layer of MoTe2 sandwiched between thin films of hexagonal boron nitride. It is known that tellurium compounds are sensitive to oxygen exposure, which leads to rapid degradation of the exposed layers in air. By encapsulating the MoTe2 gain material, much improved environmental stability is observed. Using a recently introduced single-mode resonator design, better control over the mode spectrum of the cavity is exercised and single-mode operation with a wide free spectral range is demonstrated. At room temperature, a Q-factor of 4500 and a threshold of 4.2 kW cm−2 at 1319 nm wavelength are achieved. These results lend further support to the paradigm of 2D material-based integrated light sources on the silicon platform

    Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons

    Get PDF
    Abstract Exohiss waves are whistler mode hiss observed in the plasmatrough region. We present a case study of exohiss waves and the corresponding background plasma distributions observed by the Van Allen Probes in the dayside low-latitude region. The analysis of wave Poynting fluxes, suprathermal electron fluxes, and cold electron densities supports the scenario that exohiss leaks from the plasmasphere into the plasmatrough. Quasilinear calculations further reveal that exohiss can potentially cause the resonant scattering loss of radiation belt electrons

    Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes

    Get PDF
    Abstract Storm time electron radiation belt dynamics have been widely investigated for many years. Here we present a rarely reported nonstorm time event of electron radiation belt evolution observed by the Van Allen Probes during 21-24 February 2013. Within 2 days, a new belt centering around L=5.8 formed and gradually merged with the original outer belt, with the enhancement of relativistic electron fluxes by a factor of up to 50. Strong chorus waves (with power spectral density up to 10-4nT2/Hz) occurred in the region L\u3e5. Taking into account the local acceleration driven by these chorus waves, the two-dimensional STEERB can approximately reproduce the observed energy spectrums at the center of the new belt. These results clearly illustrate the complexity of electron radiation belt behaviors and the importance of chorus-driven local acceleration even during the nonstorm times

    PACE Solver Description: Hust-Solver - A Heuristic Algorithm of Directed Feedback Vertex Set Problem

    Get PDF
    A directed graph is formed by vertices and arcs from one vertex to another. The feedback vertex set problem (FVSP) consists in making a given directed graph acyclic by removing as few vertices as possible. In this write-up, we outline the core techniques used in the heuristic feedback vertex set algorithm, submitted to the heuristic track of the 2022 PACE challenge

    Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons

    Get PDF
    Abstract Local acceleration driven by whistler mode chorus waves largely accounts for the enhancement of radiation belt relativistic electron fluxes, whose favored region is usually considered to be the plasmatrough with magnetic local time approximately from midnight through dawn to noon. On 2 October 2013, the Van Allen Probes recorded a rarely reported event of intense duskside lower band chorus waves (with power spectral density up to 10-3nT 2/Hz) in the low-latitude region outside of L=5. Such chorus waves are found to be generated by the substorm-injected anisotropic suprathermal electrons and have a potentially strong acceleration effect on the radiation belt energetic electrons. This event study demonstrates the possibility of broader spatial regions with effective electron acceleration by chorus waves than previously expected. For such intense duskside chorus waves, the occurrence probability, the preferential excitation conditions, the time duration, and the accurate contribution to the long-term evolution of radiation belt electron fluxes may need further investigations in future
    corecore