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MicroRNAs (miRNAs) are short (∼22 nucleotides) noncoding RNAs and disseminated throughout the genome, either in the
intergenic regions or in the intronic sequences of protein-coding genes. MiRNAs have been proved to play important roles in
regulating gene expression. Hence, understanding the transcriptional mechanism of miRNA genes is a very critical step to uncover
thewhole regulatory network. A number ofmiRNApromoter predictionmodels have been proposed in the past decade.This review
summarized several most popularmiRNApromoter predictionmodels which used genome sequence features, or other features, for
example, histone markers, RNA Pol II binding sites, and nucleosome-free regions, achieved by high-throughput sequencing data.
Some databases were described as resources for miRNA promoter information. We then performed comprehensive discussion on
prediction and identification of transcription factor mediated microRNA regulatory networks.

1. Introduction

MicroRNAs (miRNAs) are small noncoding RNAs with
about 22 nucleotides, which are transcribed by noncoding
DNA sequences [1, 2]. MiRNAs are disseminated throughout
the genome.They were found either in the intergenic regions
or in the intronic sequences of protein-coding genes. It has
been known that miRNAs are key elements in many species,
such as human andmouse, to function in posttranscriptional
gene regulation. One single miRNA can influence one-
third of human genome by potentially regulating thousands
of genes at the same time [3]. Similar to protein-coding
genes, miRNAs were also regulated by transcription factors
(TFs) at transcription level. Uncovering the transcriptional
mechanisms of miRNAs themselves can help people better
understand regulatory networks of gene expression.

The promoters of genes are important regions, bound
by different regulatory elements to start and regulate the
transcription [4, 5]. Locating the promoter regions of genes
is crucial for revealing the transcriptional mechanism. It

remains difficult to define miRNA promoters and under-
stand how TFs regulate downstream miRNAs. The classical
features of promoter regions, including signal, context, and
structure features, can be used to recognize miRNAs from
other sequences [6]. However, only a fraction of the human
miRNAs have their transcription start sites (TSSs) confirmed.
Insufficient knowledge of the TSSs of miRNA genes limited
our ability to study the transcriptional mechanism and the
regulatory function of miRNAs. While most of promoter
prediction methods based on the promoters of protein-
coding genes may not be suitable for miRNA genes, it is
required to develop promoter prediction methods special for
miRNA genes.

In recent years, more and more prediction models have
been developed to identify the miRNA promoters [7–12].
These studies utilized genome sequence features or took
advantage of the high-throughput sequencing technology to
identify the putative promoter regions of miRNA genes. In
this article, we reviewed algorithms of miRNA promoter
recognition based on genome sequence features, histone
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markers, RNA Pol II binding, and nucleosome-free regions
achieved from high-throughput sequencing data, respec-
tively. We performed a comparative analysis on these models
and corresponding identified miRNA promoter regions. In
order to better understand the regulatory mechanisms of
miRNA, more and more databases have been developed
to collect miRNA promoter regions by integrating differ-
ent prediction models. We also evaluated several databases
collecting such miRNA promoter information. In the last
part, we discussed the TF-miRNA regulatory networks either
predicted by computational methods or derived by high-
throughput experiments.

2. A Survey on Methods for MiRNA Promoter
Regions Prediction

The prediction of miRNA promoters is significant for con-
structing the regulatory network of TF-miRNA or miRNA
gene and further understanding the regulatory function
of miRNAs. Several most popular prediction approaches
used traditional genome sequence features, either individual
one or mixed features, whereas more and more methods
adopted next-generation sequencing (NGS) data to employ
the information of histone markers, RNA Pol II binding sites,
and nucleosome-free regions. Below is a survey on some
representative methods.

2.1. Prediction Methods Using Traditional Genome
Sequence Features

2.1.1. Individual Genome Sequence Features-Based Method.
At the early beginning, researchers used one single genome
sequence feature, expressed sequence tags (ESTs), to pre-
dict miRNA promoter regions. ESTs technology directly
originated from the human genome project to construct
the genetic map of genome. Many intergenic miRNAs are
transcribed as pri-miRNAs. Gu et al. successfully predicted
the location of pre-miRNAs by mapping the ESTs to the long
flanking sequences. They then used EST-extension method
to predict the location of about tens of pri-miRNA [13].
By comparing promoters of known miRNAs and protein-
coding genes, Zhou et al. discovered that the transcriptional
mechanism of miRNAs was similar to that of protein-coding
genes in that both miRNAs and protein-coding genes were
transcribed by RNA Pol II [14]. By relying on the sequence
feature of known Pol II promoters, they extracted all possible
k-mers as such features and usedWordSpy algorithm [21, 22]
to discover sequence motifs. Then they developed a new
approach, CoVote [14], to predict unknown core promoters
of miRNAs. CoVote was based on the decision tree algorithm
followed by training well-known Pol II promoters compared
to randomly selected sequences.Themethod has been proved
to create good predictions by being applied on four species,
C. elegans, H. sapiens, A. thaliana, and O. sativa.

2.1.2.MixedGenome Sequence Features-BasedMethod. Aswe
discussed previously, early modeling of miRNA promoters
focused only on individual sequence features [13, 14]. While

genome sequences have plenty of different features, com-
bining these features can improve the accuracy of miRNA
promoters’ prediction. Genome sequences are composed of
four bases, A, C, G, and T. The different assemblies of four
bases form the sequence features of genome, such as TATA
box, CAAT box, and GC box. Using the TRANSFAC weight
matrices of TATAbox, CAATbox, andGCbox, Fujita and Iba
utilized an entropy-based calculation to search the promoter
of miRNA genes, which was implemented in the aligned
and conserved blocks that contained miRNA hairpin regions
[15]. To verify this method, they predicted 59 core promoter
regions for 79 miRNAs, which were conserved between
human and chicken or between human and zebrafish.

Furthermore, by incorporating several different sequence
features, Bhattacharyya et al. used SVM model to predict
TSSs of intergenic miRNA [17]. They extracted a large
number of sequencing features in their study, such as N-
mer features, palindromic features, special features, and CpG
island based features. Those miRNA TSSs experimentally
verified in previous studies were used to design the SVM
classification model. Then they used well-trained complex
AMOSA-SVMmodel to recognize unknown miRNA TSSs.

Similar with the above approach, Marsico et al. pro-
posed a new approach, named PROmiRNA [16], based on
a semisupervised statistical model. First, the TSS clusters of
pre-miRNAs were generated. Second, they normalized the
TSS clusters by removing the TSS clusters overlapping with
the start of other protein-coding transcripts or spanning exon
regions. Third, the sequence features, including CpG density,
conservation score, TATA box affinity, and normalized tag
counts, were calculated around the putative TSSs regions and
the random regions. The region with a higher probability of
being a promoter region than being a nonpromoter region is
determined as a potential promoter region.

The summary of the prediction results of these methods
is shown in Table 1, including the number of the putative
miRNA promoter region of every method using genome
sequence features. However, these methods using genome
sequence features still have limitations in different tissues and
species and hence their accuracy is not high enough.

2.2. Prediction Methods Using High-Throughput Sequencing
Data. With rapid development of theNGS technology, whole
genome and exome sequencing provides researchers with the
opportunity to deal with the complex transcriptional and reg-
ulatory problem. Many sequencing technology such as RNA-
seq and ChIP-seq can obtain the detailed information of
genes, TFs, histonemarkers, nucleosome-free regions, and so
on. Nowadays, more and more high-throughput sequencing
data about miRNA expression have been collected, providing
the opportunity to more accurately identify the TSS of
miRNA and predict miRNA promoters.

2.2.1. Histone Markers-Based Method. Histone modifications
represent different chromatin states. The NGS technology,
ChIP-seq, is widely used to recognize locations of histone
modifications. Many previous studies have showed that
H3K4me3 was enriched in miRNA promoter regions, similar
to that in the promoters of protein-coding genes. Therefore,
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Table 1: Putative miRNA promoter numbers using traditional sequencing data.

Method name Number of putative human promoters Number of putative other species promoters References

EST-extension 41 Rat Mouse
[13]517 162

CoVote 107 C. elegans A. thaliana O. sativa
[14]73 95 114

miPPRs 59 — [15]

using the data of histone modifications becomes popular to
predict miRNA promoters. Marson et al. used the ChIP-
seq data of H3K4me3 containing genomic enriched loci of
H3K4me3, to predict the TSSs of miRNA genes in human
and mouse genomes [9]. As a consequence, almost 80% of
miRNAs promoters were identified in human and mouse
genome.

In 2009, Wang et al. developed a computational pro-
gram, called CoreBoost_HM, which combines several DNA
features with histone modification [8]. The DNA features
included the core promoter elements score, density of tran-
scription factor binding sites (TF BSs), Markovian log-
likelihood ratio scores, and N-mer frequencies. The boosting
algorithm was used to model these feature data to predict the
core promoters of miRNA genes. This combination of DNA
features and histone modification improved the accuracy of
prediction of miRNA promoters.

Different types of histone markers exhibit different
patterns and functions in the genome sequences. In a
previous study, we used nine different histone markers
to predict miRNA promoters in Arabidopsis [18]. These
histone markers included H3K4me2, H3K4me3, H3K9Ac,
H3K9me2, H3K18Ac, H3K27me1, H3K27me3, H3K36me2,
and H3K36me3. The RPM (reads per million per 100 bp bin)
values of these nine histone modifications were extracted
from corresponding ChIP-seq experiments for each known
and unknown promoter region, indicating their binding
patterns on these regions, respectively. The SVM model
was trained based on these datasets, by using radial basis
function (RBF) as the kernel function. Finally we iden-
tified TSSs of most miRNA genes and analyzed distinct
histone patterns around the predicted TSSs of miRNA
genes.

2.2.2. Pol II Binding-Based Method. It is believed that most
miRNA genes are also transcribed by RNA polymerase II
(Pol II), just like the protein-coding genes [23, 24], although
some exceptions exist [25]. The binding of Pol II on the
genome sequences can be used to investigate the transcrip-
tional mechanism of miRNA genes. In order to start the
transcription, Pol II always binds in close proximity to the
TSSs of genes. In other words, Pol II binding pattern may
be a key element of the promoter prediction. To better make
out the transcriptional mechanism of miRNAs, Corcoran et
al. performed ChIP-chip experiment for Pol II [11]. Based
on SVM, they developed an efficient method for predicting
core promoter, called CPPP. They successfully applied these
tools to predictmiRNATSSs and analyzed the transcriptional
mechanisms of miRNA genes.

Using genome-wide Pol II binding patterns, Wang et
al. designed a computational approach to identify the pro-
moter regions of miRNA genes [10]. A statistical model was
developed to simulate the binding patterns of Pol II around
the known TSSs of highly expressed protein-coding genes.
Utilizing maximum likelihood estimation, they selected the
best parameters that described the binding patterns of Pol
II around TSSs. According to the assumption that the Pol II
distribution around the TSSs of miRNA genes is similar to
that around the TSSs of protein-coding genes, the upstream
regions of miRNAs were then scanned to search for the
regions with similar simulated Pol II binding patterns. These
regions were inferred as the putative TSSs of miRNA genes.

To predict the promoter of Arabidopsis miRNAs, Zhao
et al. performed ChIP analysis of Pol II in Arabidopsis using
a genome tiling microarray based on the function of Pol II
[19]. Using the approach of sliding window, the Pol II binding
profiles around the known TSS of 59 miRNA genes were
obtained. To predict TSSs for miRNA genes, they developed
a procedure with three major steps: (i) setting the loci in the
upstream of the Pol II signal intensity valley as an initial start
position; (ii) using motif matcher to search for TATA box
around the start point; (iii) scanning the same region by using
the transcription initiation motifs verified by experiments.
Then different TSSwas identified for eachmiRNA gene based
on the different position of TATA box.

Theprevious studies have indicated thatH3K4me3, Pol II,
and TFs played important roles in regulating the expression
of miRNA genes. While most of the above studies used just
one type of feature to identify miRNA TSSs, Georgakilas et
al. incorporated three different types of features, including
H3K4me3 peaks, Pol II peaks, and DNaseI peaks data, to
construct amethod, namedMicroTSS, for predictingmiRNA
TSSs [20]. They first utilized these three features to train
three SVM models using libsvm v3.0. Then MicroTSS was
developed by combining H3K4me3, Pol II, and DNaseI
occupancy models together. Considering that miRNA genes
had the similar expression mechanism with protein-coding
genes, they applied MicroTSS acquired by protein-coding
genes data to predict miRNA TSSs.

2.2.3. Nucleosome-Free Region-Based Method. It is known
that TFs generally bind in nucleosome-free regions, which
is proximity to the TSSs, to activate downstream genes. Pro-
moter regions usually reveal some significant features, such
as high evolutionary conservation, nucleosome-depleted
regions, CpG islands, TFBSmotif within regions, and specific
histone modification containing H3K4me3, H3K9ac, and
H3K14ac. Based on the assumption that a nucleosome-free
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Table 2: The 20 common putative miRNA promoters predicted by four models.

Name Chrom microRNA position Marson X. Wang Ozsolak Guohua Wang
hsa-mir-200b Chr1 1092347–1092441 1088265 1088515 1087712 1088380
hsa-mir-200a Chr1 1093106–1093195 1088265 1088515 1087791 1088380
hsa-mir-429 Chr1 1094248–1094330 1088265 1088515 1087795 1088380
hsa-mir-92b Chr1 153431592–153431687 153429179 153429505 153430515 153430271
hsa-mir-148a Chr7 25956064–25956131 25955148 25957430 25957069 25957227
hsa-mir-182 Chr7 129197459–129197568 129204548 129206490 129206638 129207158
hsa-mir-96 Chr7 129201768–129201845 129204548 129206490 129206331 129207158
hsa-mir-183 Chr7 129201981–129202090 129204548 129206490 129206299 129207158
hsa-let-7a-1 Chr9 95978060–95978139 95968291 95968360 95967305 95968990
hsa-let-7f-1 Chr9 95978450–95978536 95968291 95968360 95967585 95968990
hsa-let-7d Chr9 95980937–95981023 95968291 95968360 95967585 95968990
hsa-mir-345 Chr14 99843949–99844046 99840674 99842750 99840834 99843433
hsa-mir-484 Chr16 15644652–15644730 15643092 15644680 15643760 15644503
hsa-mir-99b Chr19 56887677–56887746 56883717 56884440 56882679 56884486
hsa-let-7e Chr19 56887851–56887929 56883717 56884440 56884876 56884486
hsa-mir-125a Chr19 56888319–56888404 56883717 56884440 56883012 56884486
hsa-mir-659 Chr22 36573631–36573727 36573792 36575350 36574528 36575388
hsa-mir-545 ChrX 73423664–73423769 73426274 73428915 73428342 73428923
hsa-mir-374a ChrX 73423846–73423917 73426274 73428915 73428487 73428923
hsa-mir-505 ChrX 138833973–138834056 138840014 138842900 138842217 138842643
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Figure 1: Vann diagram of putative promoter regions. The promoter
was predicted by four models proposed byMarson et al., X. Wang et
al., Ozsolak et al., and Guohua Wang et al., respectively.

region within the ChIP-enriched site may contain a TSS,
Ozsolak et al. utilized these characteristic features to develop
a scoring function to predict miRNA promoters [7]. The
center of the valley with the highest score was defined as the
putative TSS.

We make a comparison of four models using high-
throughput sequencing data [7–10]. Figure 1 shows the Venn
diagram of the prediction promoter regions of these four
models. The putative miRNA promoter regions of the model
used by Marson et al. are chosen as the criterion to compare
with other three putative results. Since genomic coordinates
of datasets of Marson et al. are based on GRCh37/hg19, the
other three datasets are based on NCBI36/hg18, the liftOver
program obtained from the UCSCGenome browser [26] was
applied to convert genomic loci of datasets of Marson et al.
into NCBI36/hg18. There are 20 common putative miRNA
promoter regions predicted by these four models, shown in
Table 2.

3. The Database of miRNA
Promoter Construction

Therewere notmany studies onmiRNApromoter at the early
stage. Moreover, most reports focused on only a fewmiRNAs
in special species or tissues. In recent years, more and
more investigations about the prediction ofmiRNApromoter
regions have appeared. In order to make researchers have a
comprehensive understanding of miRNA genes expression
and functions, there are increasing numbers of databases that
collect the promoter information of different miRNA and
provide analysis tools to researchers.

Bhattacharyya et al. constructed a database, namedmiRT,
which accumulated the validated miRNA TSSs of the previ-
ous studies [27].They searched PubMed extensively to obtain
the information about miRNA TSSs. The miRT database
covers 670 TSS loci of 588 miRNAs with a minimum support
value of one, which includes 206 inter-miRNAs and 382 intra-
miRNAs. Some miRNAs may have multiple TSSs. The miRT
database is available at http://www.isical.ac.in/∼bioinfo_miu/
miRT/miRT.php.

Chien et al. constructed the database, miRStart, a
novel resource of human miRNA TSSs [12]. It system-
atically incorporates three significant datasets, including
CAGE tags, TSSs seq data, and H3K4me3 ChIP-seq data,
derived from TSS-relevant experiments to identify TSSs
of miRNAs. In general, a high-confidence TSS is recom-
mended for each miRNA genes based on a SVM train-
ing model. Through the database, users can define their
preferable miRNA TSSs according to the straightforward
display of experimental TSS signals. In total, miRStart
involves 940 human miRNAs. Among them, 352 miRNAs
are inter-miRNAs, and 588 miRNAs are intra-miRNAs. The

http://www.isical.ac.in/~bioinfo_miu/miRT/miRT.php
http://www.isical.ac.in/~bioinfo_miu/miRT/miRT.php
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Table 3: The number of miRNA promoters in five databases.

Database miRNAs Inter-miRNAs Intra-miRNAs Species
miRStart 940 352 588 Human
miRT 588 206 382 Human
DIANA-miRGen 428 428 0 Human, mouse
miRGen 1189 766 423 Human, mouse
AtmiRNET 281 237 44 Arabidopsis

miRStart database is freely available at http://mirstart.mbc
.nctu.edu.tw/.

Panagiotis Alexiou et al. constructed miRGen database,
providing the promoter positions of miRNA genes in human
and mouse, and their regulation by TFs [28]. The data are
supported by experimental results. The information about
microRNA coding transcripts, such as promoter regions, is
supported by four literature sources: (i) Corcoran et al. [11],
(ii) Landgraf et al. [29], (iii) Ozsolak et al. [7], and (iv)
Marson et al. [9]. In total, there are 812 human miRNAs and
386 mouse miRNA coding transcripts’ information stored in
this database. Among these, 423 miRNAs are intra-miRNAs.
In addition, this database shows binding sites of some TFs
on the promoter regions of miRNAs and the information
about SNPs. The miRGen database is freely available at
http://www.microrna.gr/mirgen/.

To accurately characterize the mechanisms of miRNA
transcription regulation, Georgakilas et al. constructed
DIANA-miRGen v3.0 database to provide accurate TSSs of
miRNA genes and the genome-wide maps of TFBSs [30].
According to their previous work [20], they used microTSS
algorithm to accurately predict 276 miRNA TSSs. These
accurately identified miRNA TSSs and TFBSs are stored in
the database. The database DIANA-miRGen v3.0 is available
at http://www.microrna.gr/mirgen.

The above databases are all about human and mouse
miRNAs. To provide comprehensive information about plant
miRNA genes, Chien et al. established the AtmiRNET
database [31]. They used high-throughput next-generation
sequencing datasets to construct SVM prediction model
to predict Arabidopsis miRNA TSSs. This database also
provides the transcriptional regulation on miRNA genes and
putative miRNA-target interactions. In total, 281 Arabidopsis
miRNA TSSs are provided in this study. Among them, 44
miRNAs are intra-miRNA, and this study used TSSs of
host genes to define intra-miRNA TSSs. This database is
very helpful in that users can understand the transcrip-
tional mechanisms and regulatory functions of miRNA in
A. thaliana. The AtmiRNET database is freely available at
http://AtmiRNET.itps.ncku.edu.tw/. Table 3 shows the statis-
tics of all five databases discussed above.

4. The Analysis of the Construction of
the TF-miRNA Regulatory Networks

According to previous studies, most miRNAs are transcribed
by noncoding genes, which are also regulated by related
transcription factors. It remains unclear how TFs regulate
miRNA genes. Constructing the regulatory network of TFs

on miRNA genes is a critical step to better understand
the functional mechanism of related miRNAs. In recent
years, TF-miRNA network has captured increased attentions.
People established such network by building computational
models or utilizing NGS experiment data.

4.1. Computational Methods. Based on Pol II binding pat-
terns around TSSs, Wang et al. developed an approach to
predict inter-miRNAs promoter regions [32]. After that, they
used position-specific score matrices (PSSM) to predict the
TFBSs of STAT1 on genomic regions. Compared with the
background promoters nonoverlapped with ChIP-enriched
regions of STAT1, it is believed that STAT1 regulates this
miRNA if the binding sites are more enriched in specific
miRNA promoters. TargetScan was then used for microRNA
target prediction to construct the feedback network of STAT1
and miRNAs.

To identify Arabidopsis miRNA promoters, Chien et
al. established a SVM-based model [33]. First, they paired
coexpressed annotated genes with specific miRNAs. By using
PWMs from TRANSFAC, they adopted Match program
[34] to search TFBSs motifs and defined the coTFBS as
the common TFBS motifs that coincided in the promoters
of a miRNA and its coexpressed genes. According to the
assumption that genes with coexpression pattern may be
regulated by the same TFs, the TFs with high frequency of
coTFBSs are thought to regulate this miRNA. Finally, the
regulatory networks about TFs andmiRNAs are visualized by
the Cytoscape software.

The previous related studies just provided limited reg-
ulatory network of TFs on miRNAs, which restricted the
identification of novel TF-miRNA networks. Thus, Falcone
et al. developed a software, named infinity, to reveal new
regulatory networks of TFs and miRNAs [35]. They collected
TSS positions from miRStart and extracted the promoter
region sequences of miRNAs from UCSC Genome Browser.
This software allows users to search the binding matrix of
TFs on the defined promoter regions. This flexibility in this
research offers the possibility of establishing unknown TF-
miRNAs regulatory networks.

4.2. Experimental Evidence-Based Method. Most of the com-
putation methods described above were developed based on
the human or mouse genome. Nowadays, people have paid
more and more attention to the expressional regulation of
other species. Martinez et al. constructedmiRNAs regulatory
network on the C. elegans genome, using high-throughput
sequencing technology to experimentally map transcrip-
tional TF-miRNA interactions [36]. For constructing the

http://mirstart.mbc.nctu.edu.tw/
http://mirstart.mbc.nctu.edu.tw/
http://www.microrna.gr/mirgen/
http://www.microrna.gr/mirgen
http://AtmiRNET.itps.ncku.edu.tw/
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Table 4: The features used in the miRNA promoter prediction models.

LiteratureEST N-mer TATA box CAAT box GC box CpG island Conservation TFBS DNase I Histone marker Pol II Nucleosome
[13] √

[14] √

[15] √ √ √

[16] √ √ √ √

[17] √ √

[9] √

[8] √ √ √

[18] √

[10] √

[11] √

[19] √

[20] √ √ √

[7] √ √ √ √ √

feedback network of miRNA-TF, they used previous algo-
rithms, such as Pictar [37] and miRanda Targets version 4
[38], to predict the target of miRNAs on specific TFs.

In the meantime, more and more relative databases have
been constructed for TF-miRNA regulatory network. For
example, TSmiR, constructed by Guo et al., is a database
that stores the regulatory networks of TFs and miRNAs in
12 human tissues. Those interactions were derived from the
high-throughput experimental data [39]. In total, TSmiR
database involves 116 TS miRNAs, 101 TFs, and 2347 TF-
miRNA regulatory relations of 12 tissues and is freely available
at http://bioeng.swjtu.edu.cn/TSmiR.

TFs and miRNAs are two key elements in the regulation
of genes. The regulatory relations, TF-miRNA-target gene,
are extremely complex, but they play an important role in
pathogenic mechanism of diseases. TFmiR is a web server
to collect the coregulatory networks of disease-specific TFs
and miRNAs [40]. It integrates genome-wide transcriptional
and posttranscriptional regulatory interactions on human
diseases, by covering TF-gene, TF-miRNA, miRNA-miRNA,
and miRNA gene regulatory networks. In total, TFmiR cur-
rently includes the information of almost 10000 genes, 1856
miRNAs, 3000 diseases, and more than 111000 interactions.
TFmiR is freely accessible at http://service.bioinformatik.uni-
saarland.de/tfmir.

5. Discussion

MiRNA has an important role in expressional mechanism of
genes, while miRNA also is transcribed by DNA sequences,
which is regulated by some special TFs. As we know,
promoter regions control the important initiation process
of transcription of genes. Accurate identification of the
promoter location is significant for better constructing the
regulatory networks and understanding the transcriptional
mechanisms. Nowadays, plenty of researchers have focused
on the prediction of miRNA promoters and have developed
many methods. In this review, we summarized these algo-
rithms by two main types, which is either based on the
genome sequence features, or based on the high-throughput

sequencing technology.The second types based on NGS data
used one or mixed features of histone markers, RNA Pol II
binding patterns, and nucleosome-free region. The methods
based on genome sequence features have limitation in tissues
and species which may lead to lower accuracy in different
studies. With the development of NGS technology, more and
more sequencing datasets will support the models using his-
tone markers, RNA Pol II binding patterns, and nucleosome-
free region.They can further improve the prediction accuracy
of miRNA promoters.

Plenty of characteristic features that have been used to
predict the promoter regions of miRNAs in methods were
discussed in this paper, including expressed sequence tags
(EST), TSSs, CpG island, TF binding sites, sequence fea-
tures (N-mer), conservation, histonemodification (especially
H3K4me3), expression ditags, poly(A) signal, cap analysis of
gene expression (CAGE) tags, familial binding profiles (FBP),
nucleosome-depleted regions, and GC content (Table 4). We
found that a number of models were built based on histone
markerswhich account for the biggest proportion. It indicates
that histone markers are key elements for identification of
miRNA promoters, especially H3K4me3 enriched in the
promoter regions [41].

It is interesting to see that different features can get
common prediction for the human miRNA genes at some
level after we compared four typical methods shown in
Figure 1. But there is no doubt that methods using different
features may result in distinct prediction patterns for miRNA
promoters. It should be noticed that most of putative results
have not had strong experiment evidence to support and
verify. In the future, we can exploit more and more NGS
data and use machine learning technology to improve the
prediction accuracy by selecting appropriate combination of
these features.

Benefited from miRNA promoter predictions, regulatory
networks of TFs andmiRNAs are being constructed.The TF-
mediated miRNA regulation network is valuable to better
understand the functional mechanisms of most miRNAs. As
we discussed in the paper, some models were built based
on the computational methods, which can be modified for

http://service.bioinformatik.uni-saarland.de/tfmir
http://service.bioinformatik.uni-saarland.de/tfmir
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different tissues, species or diseases, by using appropriate
datasets. On the other hand, other models were based on
experimental methods. They aimed at one specific tissue,
species, or disease according to the experimental design.
Thesemodels are somehowmore accurate in the construction
of specific regulatory networks. It is worth integrating the
computational method and experimental data to further
construct dynamic regulatory networks of TFs and miRNAs.
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