871 research outputs found

    Statistical analysis of environmental variability within the CELSS breadboard project's biomass production chamber

    Get PDF
    Variability in the aerial and root environments of NASA's Breadboard Project's Biomass Production Chamber (BPC) was determined. Data from two lettuce and two potato growouts were utilized. One growout of each crop was conducted prior to separating the upper and lower chambers; the other was subsequent to separation. There were little or no differences in pH, EC, or solution temperature between the upper and lower chamber or within a chamber. Variation in the aerial environment within a chamber was two to three times greater than variation between chambers for air temperature, relative humidity, and PPF. High variability in air velocity, relative to tray position, was observed. Separating the BPC had no effect on PPF, air velocity, solution temperature, pH, or EC. Separation reduced the gradient in air temperature and relative humidity between the upper and lower chambers, but increased the variability within a chamber. Variation between upper and lower chambers was within 5 percent of environmental set-points and of little or no physiological significance. In contrast, the variability within a chamber limits the capability of the BPC to generate statistically reliable data from individual tray treatments at this time

    Validated environmental and physiological data from the CELSS Breadboard Projects Biomass Production Chamber. BWT931 (Wheat cv. Yecora Rojo)

    Get PDF
    This KSC database is being made available to the scientific research community to facilitate the development of crop development models, to test monitoring and control strategies, and to identify environmental limitations in crop production systems. The KSC validated dataset consists of 17 parameters necessary to maintain bioregenerative life support functions: water purification, CO2 removal, O2 production, and biomass production. The data are available on disk as either a DATABASE SUBSET (one week of 5-minute data) or DATABASE SUMMARY (daily averages of parameters). Online access to the VALIDATED DATABASE will be made available to institutions with specific programmatic requirements. Availability and access to the KSC validated database are subject to approval and limitations implicit in KSC computer security policies

    Pick and Eat Crop Testing: Dwarf Tomato and Pepper as Candidate Space Crops

    Get PDF
    Several dwarf tomato and pepper varieties were evaluated under International Space Station (ISS)-simulated growth conditions (22 degrees Centigrade, 50 percent relative humidity, 1500 parts per million CO2, and 300 micromoles per square meter per second of light for 16 hours per day) with the goal of selecting those with the best growth, nutrition, and organoleptic potential for use in a pick and eat salad crop system on ISS and future exploration flights. Testing included six cultivars of tomato (Red Robin, Scarlet Sweet 'N' Neat, Tiny Tim, Mohamed, Patio Princess, and Tumbler) and six cultivars of pepper (Red Skin, Fruit Basket, Cajun Belle, Chablis, Sweet Pickle, and Pompeii). Plants were grown to an age sufficient to produce fruit (up to 106 days for tomato and 109 days for pepper) using Turface (arcillite) potting media with 18-6-8 control-release fertilizer and supplemental nutrient solution beginning around 60-days-age. Tomato fruits were harvested when they showed full red color, beginning around 70-days age and then at weekly intervals thereafter, while peppers were grown until fruits showed color and were harvested twice (first test) and just once at the end of the second test, with the final harvests including colored and green fruit. Plant sizes, yields, and nutritional attributes were measured and used to down-select to three cultivars for each species. In particular, we were interested in cultivars that were short (dwarf) but still produced high yields. Nutritional data included elemental (Ca, Mg, Fe, and K) content, vitamin K, phenolics, lycopene (for tomato), anthocyanin, lutein, and zeaxanthin. The three down-selected cultivars for each species were grown again and the harvested fruit sent to NASA's Johnson Space Center for sensory evaluation, which included overall acceptability, appearance, color intensity, aroma, flavor and texture. The combined data were compared and given weighting factors to rank the cultivars as candidates for testing in space. Weightings gave maximum importance to plant size (smaller being good) and fruit yield (greater yields being good). For tomato, the ranking was 1) cultivar Mohamed and cultivar Red Robin (tied), and 3) cultivar Sweet N' Neat. For pepper, the ranking was 1) cultivar Pompeii, 2) cultivar Red Skin, and 3) cultivar Fruit Basket. These rankings are somewhat subjective but provide a starting point for conducting higher fidelity testing with these crops (e.g., testing with light emitting diode lighting similar to the Veggie plant unit on ISS), and ultimately conducting a flight experiment

    Dwarf Tomato and Pepper Cultivars for Space Crops

    Get PDF
    Several dwarf tomato and pepper varieties were evaluated under ISS-simulated growth conditions (22C, 50% RH, 1500 ppm CO2, and 300 mol m(exp -2) s(exp -1) of light for 16 h per day) with the goal of selecting those with the best growth, nutrition, and organoleptic potential for use in a pick and eat salad crop system on ISS and future exploration flights. Testing included six cultivars of tomato (Red Robin, Scarlet Sweet N Neat, Tiny Tim, Mohamed, Patio Princess, and Tumbler) and six cultivars of pepper (Red Skin, Fruit Basket, Cajun Belle, Chablis, Sweet Pickle, and Pompeii). Plants were grown to an age sufficient to produce fruit (70 to 106 days for tomato and 109 days for pepper). Tomato fruits were harvested when they showed full red color, beginning ca. 70-days age and then at weekly intervals thereafter, while peppers were grown until numerous fruits showed color and all fruits (green and colored) were harvested once at the end of the test. Plant sizes, yields, and nutritional attributes were measured and used to down-select to three cultivars for each species. In particular, we were interested in cultivars that were short (dwarf) but still produced high yields. Nutritional data included elemental (Ca, Mg, Fe, and K) composition, vitamin K, phenolics, lycopene, anthocyanin, lutein, and zeaxanthin. The three down-selected cultivars for each species were evaluated for sensory attributes, including overall acceptability, appearance, color intensity aroma, flavor and texture. The combined data were compared and given weighting factors to rank the cultivars as potential candidates for testing in space. For tomato, the ranking was 1) cv. Mohamed, 2) cv. Red Robin, and 3) cv. Sweet N Neat. For pepper, the ranking was 1) cv. Pompeii, 2) cv. Red Skin, and 3) cv. Fruit Basket. These rankings are somewhat subjective but provide a good starting point for conducting higher fidelity testing with these crops (e.g., testing with LED lighting similar to the Veggie plant unit), and ultimately conducting flight experiments

    Dwarf Tomato and Dwarf Pepper as Potential Space Crops

    Get PDF
    Crops for space life support systems and in particular, early supplemental food production systems must be able to fit into the confined volume of space craft or space habitats. For example, spaceflight plant chambers such as Svet, Lada, Astroculture, BPS, and Veggie provided approximately 15-40 cm of growing height for plant shoots. Six cultivars each of tomato and pepper were selected for initial study based on their advertised dwarf growth and high yields. Plants were grown in 10-cm pots with solid potting medium and controlled-release fertilizer to simulate the rooting constraints that might be faced in space environments. Lighting was provided by fluorescent lamps (~300 umol m(exp -1) s(exp -1) and a 16 h light / 8 h dark photoperiod. Cultivars were then down selected to three each for pepper (cvs. Red Skin, Pompeii, and Fruit Basket) and tomato (cvs. Red Robin, Mohamed, and Sweet n' Neat). In all cases (pepper and tomato), the plants grew to an approximate height of 20 cm and produced between 200 and 300 g fruit fresh mass per plant. In previous hydroponic studies with unrestricted root growth, Fruit Basket pepper and Red Robin tomato produced much larger plants with taller shoots. The findings suggest that high value, nutritious crops like tomato and pepper could be grown within small volumes of space habitats, but horticultural issues, such as rooting volume could be important in controlling plant size

    Plant Growth Optimization by Vegetable Production System in HI-SEAS Analog Habitat

    Get PDF
    The Vegetable Production System (Veggie) is a scientific payload designed to support plant growth for food production under microgravity conditions. The configuration of Veggie consists of an LED lighting system with modular rooting pillows designed to contain substrate media and time-release fertilizer. The pillows were designed to be watered passively using capillary principles but have typically been watered manually by the astronauts in low-Earth orbit (LEO). The design of Veggie allows cabin air to be drawn through the plant enclosure for thermal and humidity control and for supplying CO2 to the plants. Since its delivery to the International Space Station (ISS) in 2014, Veggie has undergone several experimental trials by various crews. Ground unit testing of Veggie was conducted during an 8-month Mars analog study in a semi-contained environment of a simulated habitat located at approximately 8,200 feet (2,500 m) elevation on the Mauna Loa volcano on the Island of Hawaii. The Hawaii Space Exploration Analog and Simulation (HI-SEAS) offered conditions (habitat, mission, communications, etc.) intended to simulate a planetary exploration mission. This paper provides data and analyses to show the prospect for optimized use of the current Veggie design for human habitats. Lessons learned during the study may provide opportunities for updating the system design and operational parameters for current Veggie experiments being conducted onboard the ISS and for payloads on future deep space missions

    Search for B0→π0π0B^{0}\to \pi^{0}\pi^{0} Decay

    Get PDF
    We have searched for the charmless hadronic decay of B0 mesons into two neutral pions. Using 9.13fb^-1 taken at the Upsilon(4S) with the CLEO detector, we obtain an improved upper limit for the branching fraction BR(B0-->pi0pi0) < 5.7*10^-6 at the 90% confidence level.Comment: pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Direct measurement of the mass difference between top and antitop quarks

    Get PDF
    We present a direct measurement of the mass difference between top and antitop quarks (dm) in lepton+jets top-antitop final states using the "matrix element" method. The purity of the lepton+jets sample is enhanced for top-antitop events by identifying at least one of the jet as originating from a b quark. The analyzed data correspond to 3.6 fb-1 of proton-antiproton collisions at 1.96 TeV acquired by D0 in Run II of the Fermilab Tevatron Collider. The combination of the e+jets and mu+jets channels yields dm = 0.8 +/- 1.8 (stat) +/- 0.5 (syst) GeV, which is in agreement with the standard model expectation of no mass difference.Comment: submitted to Phys. Rev.

    Search for Zgamma events with large missing transverse energy in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    We present the first search for supersymmetry (SUSY) in Zgamma final states with large missing transverse energy using data corresponding to an integrated luminosity of 6.2 fb-1 collected with the D0 experiment in ppbar collisions at sqrt(s)=1.96 TeV. This signature is predicted in gauge-mediated SUSY-breaking models, where the lightest neutralino is the next-to-lightest supersymmetric particle (NLSP) and is produced in pairs, possibly through decay from heavier supersymmetric particles. The NLSP can decay either to a Z boson or a photon and an associated gravitino that escapes detection. We exclude this model at the 95% C.L. for SUSY breaking scales of Lambda < 87 TeV, corresponding to neutralino masses of < 151 GeV.Comment: submitted to Phys. Rev. Let
    • …
    corecore