336 research outputs found

    Deflection of prestressed concrete beaks.

    Get PDF

    CO2 induced seawater acidification impacts sea urchin larval development I: Elevated metabolic rates decrease scope for growth and induce developmental delay

    Get PDF
    Anthropogenic CO(2) emissions are acidifying the world's oceans. A growing body of evidence is showing that ocean acidification impacts growth and developmental rates of marine invertebrates. Here we test the impact of elevated seawater pCO(2) (129Pa, 1271 atm) on early development, larval metabolic and feeding rates in a marine model organism, the sea urchin Strongylocentrotus purpuratus. Growth and development was assessed by measuring total body length, body rod length, postoral rod length and posterolateral rod length. Comparing these parameters between treatments suggests that larvae suffer from a developmental delay (by ca. 8%) rather than from the previously postulated reductions in size at comparable developmental stages. Further, we found maximum increases in respiration rates of +100% under elevated pCO(2), while body length corrected feeding rates did not differ between larvae from both treatments. Calculating scope for growth illustrates that larvae raised under high pCO(2) spent an average of 39 to 45% of the available energy for somatic growth, while control larvae could allocate between 78 and 80% of the available energy into growth processes. Our results highlight the importance of defining a standard frame of reference when comparing a given parameter between treatments, as observed differences can be easily due to comparison of different larval ages with their specific set of biological characters

    Warming and temperature variability determine the performance of two invertebrate predators

    Get PDF
    in a warming ocean, temperature variability imposes intensified peak stress, but offers periods of stress release. While field observations on organismic responses to heatwaves are emerging, experimental evidence is rare and almost lacking for shorter-scale environmental variability. For two major invertebrate predators, we simulated sinusoidal temperature variability (±3 °C) around todays’ warm summer temperatures and around a future warming scenario (+4 °C) over two months, based on high-resolution 15-year temperature data that allowed implementation of realistic seasonal temperature shifts peaking midpoint. Warming decreased sea stars’ (Asterias rubens) energy uptake (Mytilus edulis consumption) and overall growth. Variability around the warming scenario imposed additional stress onto Asterias leading to an earlier collapse in feeding under sinusoidal fluctuations. High-peak temperatures prevented feeding, which was not compensated during phases of stress release (low-temperature peaks). In contrast, increased temperatures increased feeding on Mytilus but not growth rates of the recent invader Hemigrapsus takanoi, irrespective of the scale at which temperature variability was imposed. This study highlights species-specific impacts of warming and identifies temperature variability at the scale of days to weeks/months as important driver of thermal responses. When species’ thermal limits are exceeded, temperature variability represents an additional source of stress as seen from future warming scenarios

    Population structure of the recent invader Hemigrapsus takanoi and prey size selection on Baltic Sea mussels

    Get PDF
    The shore crab Hemigrapsus takanoi Asakura and Watanabe, 2005, native to the Northwest Pacific, was recorded in European waters about 25 years ago and it was first found in the Baltic Sea in 2014. Information on population structure of invaders and their new niche is needed in order to understand their biological impact. Over one year, we assessed temporal changes in relative abundance, size-class and sex ratio, as well as breeding season of H. takanoi in the Kiel Fjord (Western Baltic Sea). In addition, prey size preference and consumption rates on mussels (Mytilus edulis Linnaeus, 1758) were experimentally assessed in spring, summer and autumn. A total of 596 individuals were collected with highest and lowest abundances in June and February, respectively. Females were dominant over males (sex ratio 1.4:1), but males grew to larger sizes. H. takanoi reproduced between June and August with ovigerous females representing 30% of the entire female abundance registered over the entire year. Males were able to open larger mussels (due to larger claws) and consumed twice as many mussels when compared to females of similar size. Consumption rates for males were 6 and 2 times higher in summer (seawater temperature of 19 °C) compared to spring (8 °C) and autumn (13 °C), respectively. Females consumed 3 times more mussels in autumn than in spring. H. takanoi is an active predator, capable of reproduction in stressful brackish water conditions. Due to large abundances and high feeding pressure, this recently introduced species could play a key role in structuring post-settlement population dynamics of the dominant habitat builder M. edulis

    Estimating vadose zone water fluxes from soil water monitoring data: a comprehensive field study in Austria

    Get PDF
    Groundwater recharge is a key component of the hydrological cycle, yet its direct measurement is complex and often difficult to achieve. An alternative is its inverse estimation through a combination of numerical models and transient observations from distributed soil water monitoring stations. However, an often neglected aspect of this approach is the effect of model predictive uncertainty on simulated water fluxes. In this study, we made use of long-term soil water content measurements at 14 locations from the Austrian soil water monitoring program to quantify and compare local potential groundwater recharge rates and their temporal variability. Observations were coupled with a Bayesian probabilistic framework to calibrate the HYDRUS-1D model and assess the effect of model predictive uncertainty on long-term simulated recharge fluxes. Estimated annual potential recharge rates ranged from 44 to 1319 mm a−1 with a relative uncertainty (95 % interquantile range/median) in the estimation of between 1 % and 39 %. Recharge rates decreased longitudinally, with high rates and lower seasonality at western sites and low rates with high seasonality and extended periods without recharge at the southeastern and eastern Austrian sites. Higher recharge rates and lower actual evapotranspiration were related to sandy soils; however, climatic factors had a stronger influence on estimated potential groundwater recharge than soil properties, underscoring the vulnerability of groundwater recharge to the effects of climate change.</p

    Fine sediment reduces vertical migrations of Gammarus pulex (Crustacea: Amphipoda) in response to surface water loss

    Get PDF
    Surface and subsurface sediments in river ecosystems are recognized as refuges that may promote invertebrate survival during disturbances such as floods and streambed drying. Refuge use is spatiotemporally variable, with environmental factors including substrate composition, in particular the proportion of fine sediment (FS), affecting the ability of organisms to move through interstitial spaces. We conducted a laboratory experiment to examine the effects of FS on the movement of Gammarus pulex Linnaeus (Crustacea: Amphipoda) into subsurface sediments in response to surface water loss. We hypothesized that increasing volumes of FS would impede and ultimately prevent individuals from migrating into the sediments. To test this hypothesis, the proportion of FS (1–2 mm diameter) present within an open gravel matrix (4–16 mm diameter) was varied from 10 to 20% by volume in 2.5% increments. Under control conditions (0% FS), 93% of individuals moved into subsurface sediments as the water level was reduced. The proportion of individuals moving into the subsurface decreased to 74% at 10% FS, and at 20% FS no individuals entered the sediments, supporting our hypothesis. These results demonstrate the importance of reducing FS inputs into river ecosystems and restoring FS-clogged riverbeds, to promote refuge use during increasingly common instream disturbances

    Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis

    Get PDF
    Anthropogenic CO2 emissions are acidifying the world’s oceans. A growing body of evidence demonstrates that ocean acidification can impact survival, growth, development and physiology of marine invertebrates. Here, we tested the impact of long-term (up to 16 months) and trans-life-cycle (adult, embryo/larvae and juvenile) exposure to elevated pCO2 (1,200 μatm, compared to control 400 μatm) on the green sea urchin Strongylocentrotus droebachiensis. Female fecundity was decreased 4.5-fold when acclimated to elevated pCO2 for 4 months during reproductive conditioning, while no difference was observed in females acclimated for 16 months. Moreover, adult pre-exposure for 4 months to elevated pCO2 had a direct negative impact on subsequent larval settlement success. Five to nine times fewer offspring reached the juvenile stage in cultures using gametes collected from adults previously acclimated to high pCO2 for 4 months. However, no difference in larval survival was observed when adults were pre-exposed for 16 months to elevated pCO2. pCO2 had no direct negative impact on juvenile survival except when both larvae and juveniles were raised in elevated pCO2. These negative effects on settlement success and juvenile survival can be attributed to carry-over effects from adults to larvae and from larvae to juveniles. Our results support the contention that adult sea urchins can acclimate to moderately elevated pCO2 in a matter of a few months and that carry-over effects can exacerbate the negative impact of ocean acidification on larvae and juveniles

    Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification

    Get PDF
    Calcifying echinoid larvae respond to changes in seawater carbonate chemistry with reduced growth and developmental delay. To date, no information exists on how ocean acidification acts on pH homeostasis in echinoderm larvae. Understanding acid–base regulatory capacities is important because intracellular formation and maintenance of the calcium carbonate skeleton is dependent on pH homeostasis. Using H+-selective microelectrodes and the pH-sensitive fluorescent dye BCECF, we conducted in vivo measurements of extracellular and intracellular pH (pHe and pHi) in echinoderm larvae. We exposed pluteus larvae to a range of seawater CO2 conditions and demonstrated that the extracellular compartment surrounding the calcifying primary mesenchyme cells (PMCs) conforms to the surrounding seawater with respect to pH during exposure to elevated seawater pCO2. Using FITC dextran conjugates, we demonstrate that sea urchin larvae have a leaky integument. PMCs and spicules are therefore directly exposed to strong changes in pHe whenever seawater pH changes. However, measurements of pHi demonstrated that PMCs are able to fully compensate an induced intracellular acidosis. This was highly dependent on Na+ and HCO3−, suggesting a bicarbonate buffer mechanism involving secondary active Na+-dependent membrane transport proteins. We suggest that, under ocean acidification, maintained pHi enables calcification to proceed despite decreased pHe. However, this probably causes enhanced costs. Increased costs for calcification or cellular homeostasis can be one of the main factors leading to modifications in energy partitioning, which then impacts growth and, ultimately, results in increased mortality of echinoid larvae during the pelagic life stage

    Direct observations of the effect of fine sediment deposition on the vertical movement of Gammarus pulex (Amphipoda: Gammaridae) during substratum drying

    Get PDF
    Benthic macroinvertebrates inhabit the streambed sediments of temporary streams during drying events. Fine sediment (< 2 mm in diameter) deposition and clogging of interstitial pathways reduces the connectivity between benthic and subsurface habitats, potentially inhibiting macroinvertebrate vertical movements. Direct observations within subsurface sediments are, however, inherently difficult. As a result, confirmation of macroinvertebrate vertical movement, and the effect of fine sediment, is limited. We used laboratory mesocosms containing transparent gravel sized particles (10–15 mm) to facilitate the direct observation and tracking of vertical movements by Gammarus pulex in response to water level reduction and sedimentation. Seven sediment treatments comprised two fine sediment fractions (small: 0.125–0.5 mm, coarse sand: 0.5–1 mm) deposited onto the surface of the substrate, and a control treatment where no fine sediment was applied. We found that G. pulex moved into the subsurface gravel sediments in response to drying, but their ability to remain submerged during water level reduction was impeded by fine sediment deposition. In particular deposition of the coarser sand fraction clogged the sediment surface, limiting vertical movements. Our results highlight the potential effect of sedimentation on G. pulex resistance to drying events in streams

    Students benefit from developing their own emergency medicine OSCE stations: a comparative study using the matched-pair method

    Get PDF
    Background: Students can improve the learning process by developing their own multiple choice questions. If a similar effect occurred when creating OSCE (objective structured clinical examination) stations by themselves it could be beneficial to involve them in the development of OSCE stations. This study investigates the effect of students developing emergency medicine OSCE stations on their test performance. Method: In the 2011/12 winter semester, an emergency medicine OSCE was held for the first time at the Faculty of Medicine at the University of Leipzig. When preparing for the OSCE, 13 students (the intervention group) developed and tested emergency medicine examination stations as a learning experience. Their subsequent OSCE performance was compared to that of 13 other students (the control group), who were parallelized in terms of age, gender, semester and level of previous knowledge using the matched-pair method. In addition, both groups were compared to 20 students who tested the OSCE prior to regular emergency medicine training (test OSCE group). Results: There were no differences between the three groups regarding age (24.3 +/- 2.6; 24.2 +/- 3.4 and 24 +/- 2.3 years) or previous knowledge (29.3 +/- 3.4; 29.3 +/- 3.2 and 28.9 +/- 4.7 points in the multiple choice {[} MC] exam in emergency medicine). Merely the gender distribution differed (8 female and 5 male students in the intervention and control group vs. 3 males and 17 females in the test OSCE group). In the exam OSCE, participants in the intervention group scored 233.4 +/- 6.3 points (mean +/- SD) compared to 223.8 +/- 9.2 points (p &lt; 0.01) in the control group. Cohen's effect size was d = 1.24. The students of the test OSCE group scored 223.2 +/- 13.4 points. Conclusions: Students who actively develop OSCE stations when preparing for an emergency medicine OSCE achieve better exam results
    • …
    corecore