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Abstract. Groundwater recharge is a key component of the
hydrological cycle, yet its direct measurement is complex
and often difficult to achieve. An alternative is its inverse
estimation through a combination of numerical models and
transient observations from distributed soil water monitoring
stations. However, an often neglected aspect of this approach
is the effect of model predictive uncertainty on simulated wa-
ter fluxes. In this study, we made use of long-term soil wa-
ter content measurements at 14 locations from the Austrian
soil water monitoring program to quantify and compare lo-
cal potential groundwater recharge rates and their temporal
variability. Observations were coupled with a Bayesian prob-
abilistic framework to calibrate the HYDRUS-1D model and
assess the effect of model predictive uncertainty on long-
term simulated recharge fluxes. Estimated annual potential
recharge rates ranged from 44 to 1319 mma~! with a relative
uncertainty (95 % interquantile range/median) in the estima-
tion of between 1 % and 39 %. Recharge rates decreased lon-
gitudinally, with high rates and lower seasonality at western
sites and low rates with high seasonality and extended peri-
ods without recharge at the southeastern and eastern Austrian
sites. Higher recharge rates and lower actual evapotranspi-
ration were related to sandy soils; however, climatic factors
had a stronger influence on estimated potential groundwater
recharge than soil properties, underscoring the vulnerability
of groundwater recharge to the effects of climate change.

1 Introduction

Groundwater is the largest reservoir of liquid freshwater on
Earth and one of the most important sources of drinking and
irrigation water. Under changing climatic conditions, with
extremes occurring more frequently and intensely, the strate-
gic importance of groundwater for global water and food se-
curity is expected to further increase (Taylor et al., 2013).
In some countries, such as Austria, groundwater (including
spring water) is the most important water resource, mak-
ing up 100 % of the water supply (Vogel, 2001). The ma-
jor limitation for sustainable groundwater use is recharge,
which represents the maximum amount of water that may be
withdrawn from an aquifer without depleting it. This makes
it a crucial variable for groundwater resource management
(Moeck et al., 2020; Taylor et al., 2013). A large portion
of groundwater recharge comes from water infiltrating soil
and flowing through the vadose zone towards the water ta-
ble (Doll and Fiedler, 2008; Nolan et al., 2007). Infiltration
capacity, root water uptake, and evaporation from the upper
soil layers determine the net amount of water which is trans-
ported into the deeper vadose zone, following the gradient in
matric potential and gravity (Vereecken et al., 2008). Water
flow through the vadose zone is supposed to have a major in-
fluence on the process of groundwater recharge, even at karst
mountain sites (Berthelin et al., 2020; Hartmann et al., 2014;
Kaminsky et al., 2021; Neukum et al., 2008).

The quantification of recharge is complicated by tempo-
ral and spatial variability and by the fact that direct mea-
surements are difficult (Moeck et al., 2020, 2018; Nolan
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et al., 2007; Scanlon et al., 2002). Lysimeters are the only
means of obtaining local measurements of seepage flow,
which can be considered a good indicator of groundwa-
ter recharge (Moeck et al., 2020, 2018; Seneviratne et al.,
2012; von Freyberg et al., 2015). However, their appropri-
ate setup is difficult without introducing a bias in the hy-
drological processes (Barkle et al., 2011; Groh et al., 2016;
Piitz et al., 2018; Stumpp et al., 2012). Furthermore, the op-
eration and maintenance of lysimeters is expensive, which
is why long-term lysimeter measurements are scarce (Nolz
et al.,, 2016; von Freyberg et al., 2015). Among the most
widely used alternatives for recharge estimation are meth-
ods based on artificial and environmental tracer experiments
(e.g., Boumaiza et al., 2020; Chesnaux and Stumpp, 2018;
Koeniger et al., 2016) and groundwater table fluctuations
(Moeck et al., 2020; Collenteur et al., 2021). Common water
table fluctuation methods, however, face some limitations in
reflecting and predicting the actual recharge process (Collen-
teur et al., 2021; Healy and Cook, 2002).

Moeck et al. (2020) collected and investigated a global-
scale data set of natural groundwater recharge rates; how-
ever, recharge rates from high altitudes were underrepre-
sented in their data set. For mountain sites, in particular, there
is a lack of reported groundwater recharge rates (Bresciani
et al., 2018; Moeck et al., 2020). A limited number of studies
have reported local or regional recharge rates based on dif-
ferent modeling approaches using field measurements, such
as groundwater levels and river discharge, or available infor-
mation on vegetation and subsurface; moreover, limited work
has focused on assessing the controlling factors on ground-
water recharge (e.g., Barron et al., 2012; Collenteur et al.,
2021; Hartmann et al., 2017; Keese et al., 2005; Neukum and
Azzam, 2012).

An alternative is the inverse estimation of recharge fluxes
through the unsaturated zone by calibrating vadose zone hy-
drological models against transient observations (e.g., soil
water content and pressure head). Over the last few decades,
numerical modeling of soil water fluxes has been applied and
improved, resulting in today’s state-of-the-art soil models
with an implementation of the Richards equation for simulat-
ing the transport of water through the soil, considering heat
and energy balances and accounting for relevant processes
such as plant water uptake and snow hydrology (Simtnek
et al., 2016, 2003; Vereecken et al., 2016).

The core of this modeling approach is generally the inverse
estimation of hydraulically relevant parameters, such as soil
hydraulic parameters (SHPs) (e.g., Van Genuchten, 1980).
The use of field measurements guarantees a higher general-
izability of estimated parameters compared with small-scale
measurements of soil samples in the laboratory (Dyck and
Kachanoski, 2010; Groh et al., 2018; Stumpp et al., 2012;
Vereecken et al., 2008; Vrugt et al., 2008; Wohling et al.,
2008). Several studies have evaluated the use of vadose zone
measurements for the inverse estimation of effective SHPs
and the reliable prediction of recharge fluxes (Durner et al.,
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2008; Groh et al., 2018; Schelle et al., 2012). However, in-
verse parameter estimation is often treated as an optimization
problem with the aim of obtaining a unique solution, thereby
neglecting the uncertainty that is fundamentally associated
with parameter identification. Uncertainties originate from
different error sources including model input and forcing
data, the initial and boundary conditions, the model structure,
heterogeneity, and scale effects (Beven, 2006; Vereecken
etal., 2016). Further, the quality and scope of calibration data
affect the uncertainty in parameter estimation. It is impor-
tant not to neglect uncertainties related to the model calibra-
tion, as they can lead to uncertain or even failing predictions
(Finsterle, 2015; Vrugt and Sadegh, 2013). The emergence
of computationally efficient algorithms makes it possible to
deal with uncertainties in a statistically rigorous way based
on the Bayesian approach to statistics (e.g., Brunetti et al.,
2019; Scharnagl et al., 2011; Wohling et al., 2008). This ap-
proach relies on the idea of integrating a priori knowledge of
the system in the statistical inference and combining it with
observed data in order to derive the posterior probability dis-
tribution of parameter values, which can be used to quantify
model uncertainty. Posterior parameter distributions also re-
flect the nonuniqueness and equifinality of parameter values.

In combination with a soil hydraulic model, an efficient al-
gorithm is needed to compute posterior distributions with an
iterative Monte Carlo approach and to allow for a clear con-
vergence in a reasonable amount of time. Skilling (2006) in-
troduced nested sampling as an efficient Monte Carlo method
to estimate the integral of the Bayesian evidence, estimate the
denominator of Bayes’ theorem, and obtain posterior distri-
butions as a side product. Its efficiency has been further in-
creased with ellipsoidal nested sampling (Mukherjee et al.,
2006). Finally, ellipsoidal rejection sampling, as proposed
by Feroz et al. (2009) with the MultiNest algorithm, is able
to efficiently account for multimodal posterior distributions.
Thus, a Bayesian statistical framework using a nested sam-
pling approach in combination with a physically based soil
water model and soil water monitoring measurements pro-
vides a powerful tool for a comprehensive characterization
of the vadose zone at individual sites and the estimation of
local water balances, including an assessment of the model
uncertainties.

In this study, we made use of long-term volumetric soil
water content measurements at 14 different locations from
the Austria-wide soil water monitoring program and inte-
grated them in a Bayesian probabilistic framework with the
MultiNest algorithm to calibrate the HYDRUS-1D hydrolog-
ical model at each location. We used this approach to account
for the uncertainties inherently associated with the inverse
parameter estimation, and we simultaneously assessed and
propagated the model predictive uncertainty in simulated lo-
cal potential groundwater recharge rates. All sites were mod-
eled with the same approach on a similar data basis, support-
ing comparability of the results. Site properties included a
variety of soils and climatic conditions, allowing for the in-
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Figure 1. Panel (a) outlines the locations of the following 14 monitoring sites in Austria: (1) Lauterach, (2) Leutasch, (3) Achenkirch,
(4) Gschlossboden, (5) Sillianberger Alm, (6) Zettersfeld, (7) Elsbethen, (8) Gumpenstein, (9) Aichfeld-Murboden, (10) Kalsdorf, (11) Pet-
tenbach, (12) Schalladorf, (13) Lobau, and (14) Frauenkirchen. Panel (b) provides the soil map data basis: digital soil map of Austria, 1 km
raster, Federal Forest Research Center (BFW, 2016). Panel (c) shows the Hydrological Atlas of Austria (HAO) mean areal annual precipi-
tation (Kling et al., 2007b), and panel (d) shows the HAO mean areal annual actual evapotranspiration (Kling et al., 2007a); maps from the

HAO where compiled using QGIS (QGIS Development Team, 2022).

vestigation of factors that influence the long-term soil water
balances and temporal variability in potential groundwater
recharge.

2 Material and methods
2.1 Austrian soil water monitoring program

The locations of 14 Austrian soil water monitoring sites are
shown in Fig. 1a. Figure 1b gives an overview of soil types
according to the digital soil map of Austria (BFW, 2016).
Figure 1c and d show the respective long-term annual areal
precipitation (modified from Kling et al., 2007b) and actual
evapotranspiration (modified from Kling et al., 2007a) esti-
mates. According to texture information (ONORM L 1050,
2016), the soil types at the measurement sites vary be-
tween sand and silt loam/loamy silt (11 %—-88 % sand, 12 %—
75 % silt, and 0%-32% clay). Details on altitude, geo-
coordinates, soil textures, and measurement depths are given
in the Appendix (Table Al). Briefly, Zettersfeld, Gschloss-
boden, and Sillianberger Alm are on the subalpine level in
the southwest of Austria, characterized by high organic mat-
ter contents, a coarse soil texture, and/or a high skeleton
fraction; Leutasch, Achenkirch, Gumpenstein, and Aichfeld-
Murboden are located on the montane level from western to
central Austria, with soil textures ranging between sand and
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loam; Pettenbach, Elsbethen, and Lauterach are located in the
foothill zone in western to central Austria, with soil textures
ranging from loam to loamy silt; and Kalsdorf, Schalladorf,
Lobau, and Frauenkirchen are situated in the southern and
eastern lowlands, with sandy to loamy soil textures. Loca-
tions included in this study are horizontally even at the plot
scale and usually consist of uncultivated grassland. In con-
trast, the cultivation of alternating crops was carried out at
the Pettenbach location, and details regarding the crop cover
at this site for calibration and validation periods were ob-
tained from technical reports provided by the Upper Austrian
Government (Land 00, 2013, 2014).

Long-term field measurements of volumetric soil water
content, measured with time domain reflectometry/frequency
domain reflectometry (TDR/FDR) over several years, partly
since 1996, are carried out within the Austrian soil water
monitoring program of the Federal Ministry of Agriculture,
Forestry, Regions and Water Management (BML). Within
the framework of this program, continuous measurements
are conducted at various depth levels of soil profiles with
the aim of providing standardized and quality-assured mea-
surement data. In this study, for inverse parameter estima-
tion, we selected calibration periods of around 6 months with
sufficiently complete and plausible soil water content mea-
surement series (Fig. A2) and aggregated the data to a daily
resolution. We used a model spin-up period of 2 months to
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relax the effect of initial conditions on the estimation pro-
cedure. The length of calibration periods was chosen to be
similar for all sites and was long enough to be informative
for a range of soil water conditions. We excluded the winter
season, which requires the simulation of snow accumulation
and melt processes, as it increases the computational cost and
numerical sensitivity of the simulations and introduces ad-
ditional complexity and potential biases in the calibration.
The use of spring—summer months, which have an alterna-
tion of wet—dry periods, is expected to increase the infor-
mativeness of soil water measurements. The monitoring pro-
gram also offers composite matric potential measurements
from tensiometers and gypsum blocks; however, the discon-
tinuity of these data complicates the modeling and analysis,
which is why they have not been used in this study. Vali-
dation periods were chosen to provide 1 year or more of
continuous, plausible data. Snow hydrology was simulated
for the model validation, as described in Sect. 2.2.1. De-
tails on the calibration and validation periods are summarized
in Table A2. Several locations were equipped with lysime-
ters: at Leutasch and Pettenbach, in situ soil water content
measurements were directly obtained from lysimeter setups;
in Gumpenstein, soil water content measurements were ob-
tained from a soil profile next to a lysimeter cluster that pro-
vided long-term seepage measurements. Lysimeter measure-
ments from Leutasch and Gumpenstein were used for addi-
tional validation of recharge rates.

2.2 Modeling theory

2.2.1 Water flow and root water uptake

The mechanistic HYDRUS-1D model (Simtnek et al., 2016)
was used to simulate water flow in the vadose zone pro-
files. HYDRUS-1D is a finite element model that numerically
solves the one-dimensional Richards equation:

89—8 K(h oh 1 Sh 1
E—&[ ()(8_z+ )i|— (h), (D

where 6 (L3 L73) is the volumetric water content, ¢ (T) is the
time variable, z (L) is a vertical coordinate, K (h) (LT 1)
is the unsaturated hydraulic conductivity function, and 4 (L)
is the pressure head. S (T~') is a sink term accounting for
water uptake by plant roots. The unimodal van Genuchten—
Mualem (VGM) model describes the soil hydraulic proper-
ties, namely the soil water retention curve (Eq. 2), and the
unsaturated hydraulic conductivity (Eq. 3).
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Here, 6; (L3> L73) is the residual water content; 65 (L3 L~3)
is the saturated water content; & (L™1), n (-), and m (-) are
van-Genuchten shape parameters, with the relation given in
Eq. (4); Se (-) is the effective saturation (defined in Eq. 5);
and / (L) is a pore connectivity parameter. The unimodal
VGM model has successfully been used in several studies
to parameterize the hydraulic behavior of variably saturated
soils (e.g., Brunetti et al., 2020b; Dettmann et al., 2014; Lam-
bot et al., 2002). It has been shown to become more inconsis-
tent in the clay range of soil textures (Fuentes et al., 1992);
however, this limitation does not affect any soils in the frame-
work of this study, and the model was thus employed for all
sites. The sink term for the simulation of plant water uptake
is implemented as follows (Feddes et al., 1978):

1
S(h) :a(h)an, (6)

where rg (L) is the root depth, T, (L) is the potential transpi-
ration, and «(h) is a prescribed water stress response func-
tion depending on the crop type. The crop parameterization
for the sites in this study used the default values for grass
cover (Taylor and Ashcroft, 1972), except for the Pettenbach
calibration which used a maize parameterization according
to Wesseling et al. (1991).

The model domain was set up from the soil surface to
1.5 m depth at all sites, and two different soil materials were
defined for the upper soil (including 20 cm root zone) and
the lower soil, respectively. The depths of the soil layers are
given in Table A3. The available soil water measurements
and profile information (texture data and soil horizons) indi-
cated a distinct topsoil overlying deeper soil layers with low
to mild degrees of inhomogeneity in the vast majority of the
soil profiles. Dealing with 14 monitoring stations, we uni-
formly adopted two soil layers with varying thickness across
different locations, aiming to reduce the overall computa-
tional burden of the Bayesian analysis while maintaining a
physically realistic description of the soil domain. Simplifi-
cations of the soil profile in the model geometry with a mildly
heterogeneous soil will usually lead to an acceptably small
loss of accuracy in effective parameters (Schneider et al.,
2013).

In this study, we define the point at which percolating wa-
ter is expected to contribute to groundwater recharge as the
amount of water that arrives at the bottom of the area at a
depth of 150 cm, well below the root zone. It is assumed that
water arriving at this depth will not be subject to further loss
mechanisms and, therefore, will reach the water table (Hep-
pner et al., 2007). Similar to our approach, Simiinek (2015)
and Heppner et al. (2007) simulated groundwater recharge
with HYDRUS-1D for grass-covered soils as the bottom flux
at a 100 cm profile depth; Assefa and Woodbury (2013) used
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different profile depths of up to 150 cm. However, as the
point where water actually reaches the water table remains
unknown, the estimation obtained using this approach can be
referred to as potential recharge (Scanlon et al., 2002).

Daily time steps were used in all simulations, for variable
boundary conditions and for simulated soil water content and
water fluxes. Meteorological data for the sites, including pre-
cipitation, solar radiation, sunshine duration, wind speed, and
relative humidity, were obtained from the Central Institution
for Meteorology and Geodynamics (ZAMG), Austria. The
potential evapotranspiration ETy was calculated using the
Food and Agriculture Organization (FAO) Penman—Monteith
method, according to Allen et al. (1998). At the upper bound-
ary of the model domain, an “atmospheric”, “zero-ponding”
boundary condition was specified; to specify this boundary
condition, an equilibrium is prescribed between the soil sur-
face pressure and atmospheric water vapor pressure when the
evaporative demand exceeds the soil evaporation capacity,
and the pressure at the soil surface is set to zero when both
infiltration and surface runoff occur. For the parameter es-
timation during the half-year calibration periods, as well as
for the model validation periods, we chose boundary condi-
tions with respect to the conditions at the measurement plots,
i.e., seepage face for the lysimeter sites and free drainage for
sites with natural field conditions. For the simulation of long-
term potential recharge rates, the lower boundary condition
at all sites was set to free drainage in order to reflect natural
conditions with a water table far below the model domain.
To improve the comparability of long-term simulations at
the sites, a grass reference was used with the calibrated Pet-
tenbach model to simulate long-term groundwater recharge.
Long-term simulations comprised the entire period of avail-
able soil water and meteorological data. For the Achenkirch
location, only 2 years of meteorological data (2017-2018)
were available.

For model validation and long-term simulations, snow ac-
cumulation and snowmelt were accounted for in HYDRUS-
1D. The model treats any precipitation falling at a tem-
perature below —2°C as snow and any precipitation above
+2 °C as liquid, assuming a linear transition between —2 and
+2°C. A 0.4 factor as snow sublimation constant was used
for the reduction of potential evaporation from snow, and the
simulation of snowmelt at temperatures above 0 °C used a
constant of 0.43cmd~!°C~!. This default snow routine in
HYDRUS is based on assumptions by Jarvis (1994) and has
been found to be suitable for estimating soil water fluxes in
unfrozen soils in several studies (e.g., Assefa and Woodbury,
2013; Zhao et al., 2008).

2.2.2 Bayesian analysis
Bayes’ theorem (Eq. 7) is the basis for the estimation of pa-

rameter posterior distributions, which are used for quantifi-
cation of model parameter uncertainties after calibration.
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b _ P(DIM,Q)P(QM)
(QID, M) = P(DIM) (7

Here, P(2|D, M) is the posterior probability of the model
parameters (€2), given the data (D) and the model (M);
P(D|M, Q) is the conditional probability of the data given
the model and parameters; P (2| M) is the prior probability;
and P(D|M) is the marginal likelihood or Bayesian model
evidence (BME). Prior knowledge, i.e., information available
before looking at measured data, is included in the Bayesian
inference via the prior distribution, which can be chosen as
a uniform density bounded by physical limits (e.g., Brunetti
et al., 2020b; Gupta et al., 2022; Wohling et al., 2015). In
this study, uniform prior distributions were assumed for all
parameters and sites. Their ranges were established based on
texture information, literature review, and preliminary test-
ing to prevent truncating posteriors. Final ranges are given in
Table A3. By combining the likelihood and the prior, we ob-
tain a posterior distribution of the most probable SHP values,
which reflects the parameters’ uncertainty.

We used volumetric water content measurements from
TDR sensors in the calibration; the measurement error is
based on electromagnetic instantaneous pulses and can be as-
sumed to be independent, homoscedastic, and normally dis-
tributed. This leads to a Gaussian likelihood function (Eq. 8),
where o is the standard deviation in the measurement error,
M; (2) is the model realization, and y; is the corresponding
observed data:

ko 1, -
L(Q|D, M) 11 mexp[ 50 (M) = 5) } ®)
The choice of likelihood function is critical to the outcome
of Bayesian inference and is the subject of ongoing debate.
A recent promising approach that should be explored in fu-
ture studies is the universal likelihood approach proposed
by Vrugt et al. (2022). Instead of making prior assump-
tions about the distribution of model residuals in the like-
lihood function, this approach is distribution-adaptive with
respect to the actual residual properties. However, in the
present study, we used the Gaussian likelihood function, as
described above, for process-based probabilistic inference,
and we employ significant, systematic discrepancies between
model predictions and observations that violate our assump-
tions as indicators that the model structure needs improve-
ment. We show the residual checks for the Gumpenstein lo-
cation as an example in the Appendix (Fig. Al).

At all 14 locations, 10 soil hydraulic parameters (SHPs)
(residual, 6, and saturated, 65, water content parameters,
shape parameters « and n, and the saturated hydraulic con-
ductivity parameter K, for two soil layers, respectively)
were estimated per site. The pore connectivity parameter [
was fixed to 0.5 according to Mualem (1976). Along with
the SHPs, the standard deviations of the measurement errors
were estimated in the Bayesian inference.
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The implementation of the Bayesian approach in a numer-
ical framework can become challenging for nonlinear mod-
els, such as the model used here. The nested sampling al-
gorithm, as proposed by Skilling (2006), has been used suc-
cessfully for parameter estimation and uncertainty quantifi-
cation in studies with nonlinear hydrological or biogeochem-
ical models (Brunetti et al., 2020a; Elsheikh et al., 2013).
It has been tested in Schiil et al. (2022) with synthetic data
scenarios for SHP estimation with similar HYDRUS mod-
els and has been found to reliably infer the true parameter
values as well as the standard deviations of the artificial er-
rors in the calibration data. Nested sampling is an efficient
Monte Carlo method that estimates the Bayesian model evi-
dence and calculates posterior distributions as a side product.
It transforms the multidimensional integral of the Bayesian
model evidence (BME) into a one-dimensional one, which is
then solved iteratively, based on the evaluation and redistri-
bution of a number of “live points” over the parameter space.
Several improvements were implemented with respect to the
original algorithm, such as the ellipsoidal rejection sampling
scheme which is able to establish multiple posterior modes.
This has been realized in the MultiNest algorithm by Feroz
et al. (2009). This algorithm has been shown to be well suited
to multimodal distributions and moderately complex inverse
problems with up to 20 parameters (Buchner, 2016; Feroz
and Hobson, 2008). The algorithm is particularly suitable for
our study because it offers a high level of efficiency for uni-
modal problems while also handling the possibility of mul-
timodal posteriors. Further details on the algorithm can be
found in Feroz et al. (2019, 2009), Feroz and Hobson (2008),
and Mukherjee et al. (2006).

Here, we used a number of live points N = 100 to sample
the parameter space. This number has been shown to pro-
duce a reliable estimate of the BME integral (and therefore a
satisfactory sampling of the parameter space) in a sensitivity
analysis by Brunetti et al. (2020a, b) for similar models and
dimensionalities. At each iteration of the algorithm, the cur-
rent maximum likelihood sample point is multiplied by the
remaining prior volume to estimate the maximum remaining
volume of the BME integral. Sampling is then terminated
according to a tolerance (convergence) criterion, which de-
fines when the remaining contribution from the current live
points to the integral is considered to be small enough. At this
point, it is expected that the bulk of the posterior has been
sampled sufficiently. The tolerance parameter in this study
was set to 0.5. The number of posterior samples provided by
MultiNest depends on the algorithm convergence with each
model. On average, we obtained 4100 posterior samples and
corresponding sample weights to characterize posterior pa-
rameter distributions. We used 100 random samples from the
posterior to propagate parameter uncertainty in the model
for long-term simulations in order to quantify the resulting
uncertainty in recharge simulations. Uncertainty ranges for
SHPs and soil water fluxes are given as 95 % interquantile
ranges (IQRs).
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2.2.3 Statistical analysis

Simulations with the successfully calibrated models were
used in a second step to perform a statistical analysis in or-
der to characterize and describe the variability in groundwa-
ter recharge at the monitoring sites and to assess the influ-
ence of climatic, geographic, and soil properties on potential
groundwater recharge rates and their temporal variability. For
this purpose, we used a principle component analysis (PCA)
and established clusters of sites with similar properties using
agglomerative clustering (Pedregosa et al., 2011). In order
to quantify the temporal variability in water balance com-
ponents, we calculated the coefficient of variation (CV) val-
ues, defined as the quotient of standard deviations between
months within a year, as measure for seasonal variability.
Spearman’s p correlations were used to identify predictor
variables for potential groundwater recharge rates and tem-
poral variability. The significance of correlations was evalu-
ated at a 90 % confidence level (p < 0.1).

3 Results and discussion
3.1 Calibration and validation

The required number of iterations of the MultiNest algo-
rithm with models for all 14 locations ranged between 2595
and 5515 (4111 on average) until the termination criterion
was satisfied (as described in Sect. 2.2.2), generally result-
ing in unimodal posterior parameter distributions. Median
parameter estimates and estimated measurement errors in-
cluding the 95 % credible interval are given in Table 1 for the
upper and lower soil layers at the 14 sites. Figure 2 shows
the calibrated measurement error and median prediction of
the volumetric soil water content for the upper and lower soil
layers for the Gumpenstein location as an example. Calibra-
tion plots for all 14 sites are shown in Fig. A2. In Fig. 3, the
uncertainty in the parameter estimation is summarized for all
14 sites as ratios between the 95 % interquantile range (IQR)
and the median estimate.

Median estimates for the VGM shape parameters o and n
varied between 0.001 and 0.945cm™' and between 1.01
and 2.30, respectively, but o was < 0.01 cm~! at most
sites. Except for the high « estimates at Gschlossboden
(; =0.945cm™") and Lobau (¢; =0.511cm™! and o, =
0.696 cm_l), the VGM shape parameters fell well within
the range of values predicted by the ROSETTA pedotransfer
model (Schaap and Leij, 1998); high estimates for & and n
coincided with a high reported sand fraction. Median esti-
mates for hydraulic conductivity parameters K ranged from
5to0 3863cmd !, and high values were found for soils with
high organic and stone content fractions (Gschléssboden, Sil-
lianberger Alm, and Zettersfeld).

A typical example of marginal posterior distributions re-
sulting from SHP estimation on the basis of volumetric soil
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Table 1. Median estimates and the 95 % credible interval of soil hydraulic parameters and measurement errors for the upper (L1) and

lower (L2) soil profiles.

Site Or (crn3 cm73) Os (cm3 cm73) o (crnfl) n(-) K (cm dfl) Omeas (crn3 cm73)

—+0.062 +0.019 +0.002 +0.19 +65.2 +0.002

Lauterach LU olsatopy  0425Tp0 0002 g 134T 1339754 00247000
L2 0.0687 0.3901) 0.00610055 1197 531 0.027%)

—0.062 —0.008 —0.002 —0.07 -1.3 —0.002

+0.046 +0.028 +0.004 +0.05 +290.3 +0.002

Leutasch L1 00227003 046270028 00067000 1207000 667313393 0.03170005

L2 009670002 01607000  0.005T000 2307033 770173090 0.0117 900

; +0.054 +0.025 +0.001 +0.01 +207.2 +0.003

Achenkireh L1 0023%gps 0570700 0001 Ty 113Tgp 76370, 00487 o0

L2 000170000 019770005 000470007 1097001 18438710 0.0110000

& +0.000 +0.047 +0.053 +0.27 +605.4 +0.001
Gschlgssboden L1 0.05070000 027870051 094570953 225T027 8390154 0.021 79001
L2 00057000 03201005 000270008 2.047010 2320575050 0.009 10001

1 +0.052 +0.042 +0.009 +0.03 +1769.1 —+0.002

Sillianberger L1~ 0.143%005% 053670081 0.00670007  1.12¥003 3098777621 0.03010005

Alm L2 08970010 05357001 000270001 1L11T00T 38634130502 0.02375-92

+0.061 +0.015 +0.228 +0.02 +1194.2 —+0.002

Zettersfeld LI 00827500 0583505 00607g0y  L09Tge 3620750087 00307 005
L2 00197007 02567000 000170000 1097007 3344.6F 10008 0.007 000"

+0.082 +0.012 +0.001 +0.05 +52.7 +0.001

Elsbethen LU 0105Tgps 045350 0001 Ty 113700 1448753 0013001
L2 00317 0.40810 0.00170000 1167 18.315% 0.01970

—0.028 —-0.010 —0.000 —0.03 —8.5 —0.002

; +0.027 +0.014 +0.001 +0.01 +97.6 +0.001

Gumpenstein L1 0051Tggse  0375Tger  0.003Tgper 108Tgp 392101 00120
L2 00677 033375 000175001 1.08T¢: 21421102 0.009T¢:

—0.050 —0.007 —0.001 —0.02 —105.6 —0.001

; +0.035 +0.010 +0.048 +0.02 +135.1 +0.001

Aichfeld- LI 0214fgps  0391Tge) 00265505 106700 856305 0.021 g0
Murboden L2 0.1007 0.245%0 0.6617050  1.237¢; 57.007% 0.008()

—0.015 —-0.017 —0.264 —0.05 —33.8 —0.000

+0.044 +0.080 +0.008 +0.24 +469.1 +0.004

Kalsdorf LI 0036%gps  0448Tgpy 001 Tpgee 1465575 48697507, 0043 003
L2 00171 0.309F0 0.03310010  1.507: 867.41 10 0.01670

—0.016 —0.009 —0.011 —0.08 -301.3 —0.001

+0.108 +0.005 +0.001 +0.06 +239.7 +0.004

Pettenbach LI 0063Tggs  03877ppe 000 gmy  LISTaer 245370 00360 00s
L2 01637 0.405F0 0.51610357  1.037(: 19.61 e 0.012F9

—0.068 —0.007 —0.421 —0.01 —16.2 —0.001

+0.033 +0.039 +0.007 +0.06 +27.2 +0.002

Sehalladorf L1 0013%gp)  0455Tpiay 0011 gpe 1287008 71007 0.023 00
L2 0.049%) 0.395F0 0.00110000  1.227: L5y 0.005F0

—0.046 —0.002 —0.000 —0.07 -0.5 —0.000

+0.013 +0.019 +0.266 +0.01 +201.0 +0.002

Lobau LI 0006700 07237Tgps  0S1Tgqg0  LI8Tae 68457100 004470 00
L2 01737 037810 0.6961030%  1.017(: 26201155 0.004F0

—0.055 —0.004 —0.304 —0.00 —149.0 —0.000

; +0.045 +0.052 +0.001 +0.12 +150.2 +0.003

Fraenkirchen L1 0049700, 0489Tpp0y 0001 ggy 1467y 33347575 00299 s

L2 00087000 03597003 000210000 1327007 269.87105 0.0197 000

water content data in this study is shown in Fig. 4 for the up-
per soil layer of the mountainous Zettersfeld location. Limits
of the plot axes are given by the prior bounds. This represen-
tation shows how well the calibration data constrained uncer-
tainties in each parameter: the posterior range of 6; is only
slightly reduced compared to the prior range, indicating that
6 was the least sensitive with respect to simulating soil water
content and poorly informed by observations. The parame-
ter K has a wide posterior range (although clearly reduced
compared with the prior), showing a logarithmic distribution

https://doi.org/10.5194/hess-27-1431-2023

and a clearly defined mode. On the other hand, the parame-
ters « and, especially, n and 65 show narrow posterior distri-
butions which appear leptokurtic, indicating a higher sensi-
tivity for the soil water content simulations and a high infor-
mation gain from the calibration data.

Parameter interdependencies in the inverse estimation are
reflected in the shapes of the bivariate contour or scatterplots
of posteriors (see Fig. A3 for a representation of posteriors
with closer axis ranges). By random sampling from the pos-
terior, the effect of these correlations is propagated in the

Hydrol. Earth Syst. Sci., 27, 1431-1455, 2023
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Figure 2. Parameter estimation at Gumpenstein: calibration period
with soil water content measurements (gray) from two depth levels,
including the calibrated measurement error o, and prediction with
median parameter estimates (blue).
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Figure 3. Box plots of estimated parameter uncertainties (index 1
denotes the upper soil layer and index 2 denotes the lower soil
layer) from all 14 sites, as ratios between the 95 % interquantile
range (IQR) and median estimates.

uncertainty in the prediction of soil water fluxes. Usually, a
negative relation exists between the VGM shape parameters
(e.g., Scharnagl et al., 2011; Vrugt et al., 2003; Romano and
Santini, 1999). Here, both « and n show narrow posteriors
and stray close to the lower physical bounds (0 and 1, respec-
tively). The correlation of posterior samples for o and K
can be expected to have some effect on the uncertainty in
recharge peak prediction, for which both parameters (but es-
pecially K under wet conditions) are sensitive (Schiil et al.,
2022). This will be further discussed in Sect. 3.2.

Generally, uncertainties in the estimation of the residual
water content parameter 6; and the saturated hydraulic con-
ductivity parameter K for the sites were high, for both the
upper and lower soil layers (IQR / median ~ 26 for Ky, at
Lauterach). The uncertainty in the shape parameter o was

Hydrol. Earth Syst. Sci., 27, 1431-1455, 2023

medium with a relative uncertainty (IQR / median) < 6 and
mostly low absolute values for the estimates and uncertainty
ranges. The shape parameter n and the saturated water con-
tent parameter 65 were identified with the highest precision
(IQR / median < 0.5).

Overall, SHP estimation using soil water content moni-
toring data from different depth levels was associated with
some uncertainty. An important factor for parameter uncer-
tainty was soil texture: uncertainties in the K and n param-
eters, in terms of the 95 % interquantile range (IQR) for pos-
teriors, were significantly positively correlated with the per-
centage of sand (» = 0.43 and » = 0.42, respectively). Uncer-
tainty ranges in K, «, and n increased significantly with the
value of median estimates (Fig. 5). Higher values of these
parameters signify a lower water retention capacity of the
soil. According to results from Schiil et al. (2022) and Gao
et al. (2019), parameter uncertainty from calibration with
daily soil water content measurements can be expected to be
higher in coarse-textured soils (with a higher soil hydraulic
conductivity and lower soil water retention capacity) than in
fine-textured soils — which was the case in this study. We
suppose that the more rapid water flow processes are less ef-
ficiently captured in daily soil water content measurements,
which are consequently less efficient with respect to con-
straining the uncertainties in SHPs.

We expectedly found high parameter uncertainties for sites
where the estimated errors were high (o > 0.04 cm® cm ™3 at
Kalsdorf and Lobau) or where the error was high in compari-
son to the temporal variation (more than 90 % of the standard
deviation in the observations at Zettersfeld and Sillianberger
Alm). Xie et al. (2018) observed how the relation between
the size of the estimated measurement error and the tempo-
ral variation in the measured variable influences the ability of
the data to constrain model uncertainties. In the estimation of
SHPs with remote sensing soil moisture data, Brunetti et al.
(2019) observed that uncertainty in 6; estimation was low,
whereas 6 was highly uncertain. This was related to soil wa-
ter content values being low in their study and mainly repre-
sentative of unsaturated conditions. In this study, at Lauter-
ach and Elsbethen, very wet climatic conditions and mea-
surements mainly in the wet range resulted in the highest
uncertainties in the estimation of 6,. At Kalsdorf, in contrast,
soil moisture dynamics were hardly at saturation and resulted
in the highest uncertainty in 65 estimation. At the majority
of the Austrian locations, soil water content measurements
were more often near saturation and less in the dry range (as,
for example, at Gumpenstein in Fig. 2a). The 6 parameter
was, therefore, mostly better informed by the measurements
than 6;. The estimation of K has been frequently shown to be
associated with high uncertainties (e.g., Baroni et al., 2010;
Minasny and Field, 2005; Mishra et al., 1989).

The reliability of the calibration was quantified by the
root-mean-square error (RMSE) between median simula-
tions and observations during calibration and validation
periods (summarized for all sites in Table A2). Overall, the
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Figure 4. Marginal posterior distributions (one-dimensional projection on top of each column and joint distributions of each two parameters
below) of estimated SHPs for the upper soil layer at Zettersfeld. Presented are the respective residual and saturated water content parameters 6y
and 6 (cm3 cm™3 ), the VGM shape parameters o (cm_l) and n (-), and the saturated hydraulic conductivity parameter Ks (cm d_l). The
axis ranges correspond to the parameter bounds of the prior distribution. A close-up presentation of distributions with narrower axis ranges
is shown in Fig. A3.
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Figure 5. Correlations between median parameter estimates and the 95 % interquantile range (IQR) from posterior parameter distributions for
estimated SHPs for 14 sites — each with two soil layers (blue dots show the upper soil layer and gray circles show the lower soil layer). The o
and K parameters are shown on a log scale to better depict the range of values. Spearman’s p (r) is given for the presented correlations.
The correlations were highly significant with p < 0.01 for &, n, and K on a log scale as well as on a linear scale. On the linear scale, r was
slightly lower for « (r =0.77) and K (r = 0.89).

calibration fit was good, with RMSE values ranging between period was missed for both layers. For the validation
0.009 and 0.028 cm® cm™3. Some events were missed by the periods, the fit in terms of the RMSE deteriorated, espe-
model: at Lauterach and Elsbethen, the drying of the lower cially for the Lobau (calibration RMSE = 0.028 cm? cm™3
soil layer in summer was underestimated; at Gschlossboden, and validation RMSE =0.054 cm3 cm’3) and Petten-
the peak in soil water content in the early calibration bach (calibration RMSE =0.020cm? cm™3 and validation

https://doi.org/10.5194/hess-27-1431-2023 Hydrol. Earth Syst. Sci., 27, 1431-1455, 2023



1440

M. Schiibl et al.: Estimating vadose zone water fluxes from soil water monitoring data

Table 2. Local long-term average water balances at 14 sites, showing precipitation (P), potential evapotranspiration (ETp), and the simulated
potential groundwater recharge (GWR) and actual evapotranspiration (ET,) with the 95 % credible interval from propagated parameter

uncertainty.
Period P ETy GWR ET, GWR/P
(mma~!)  (mma!) (mma!) (mma!) (%)

Lauterach 1996-2018 1578 700 907t 67127 57l %
Leutasch 2008-2018 1235 622 66519 s21t]) 54t
Achenkirch 2017-2018 1533 673 102241 480t 67t %
Gschlsssboden 2012-2018 1493 552 131977 17072 880 %
Sillianberger Alm ~ 1997-2018 1023 707 578715 4391 s7H %
Zettersfeld 2012-2018 1353 634 92671 39911 68t %
Elsbethen 1996-2018 1468 665 8530 61476 58T %
Gumpenstein 1996-2018 1100 661 64118, aagtil 58t
Aichfeld-Murboden ~ 1996-2018 813 728 24475 55772 3010 %
Kalsdorf 1996-2018 8§52 801 229720 623T)) 2773 %
Pettenbach 1996-2018 1031 789 459118 558720 4529
Schalladorf 1996-2018 484 893 AR B A
Lobau 1996-2018 570 913 4478 52013 871 %
Frauenkirchen 2005-2018 601 882 92t 526710 15T %

RMSE = 0.067 cm® cm~3) locations. The Lobau soil profile
was under the influence of water table fluctuations; thus,
we cannot exclude that model assumptions about the lower
boundary condition have been occasionally violated at this
location. At the Pettenbach lysimeter station, crop rotation
including fertilization was applied. It is possible that this
affected soil properties, which were assumed to be constant
in the modeling. For example, in their review, Lu et al.
(2020) showed that root growth and decay can alter soil
hydraulic properties; moreover, Whalley et al. (2005) found
that growing different plants had a significant effect on the
porosity of the soil aggregates, and Schjgnning et al. (2002)
observed the development different pore systems in soils
depending on crop rotation and fertilization.

Overall, in the validation periods RMSE values ranged be-
tween 0.014 and 0.067 cm? cm 3. Scatterplots including the
coefficients of determination (R2, 0.34-0.98) for the valida-
tion period are shown in Fig. A4.

3.2 Simulated long-term water balance at the local
scale

The calibrated models were used to simulate and assess
different components of the water balance for all monitor-
ing stations. In particular, we looked at long-term estimates
and temporal variability in actual evapotranspiration and po-
tential groundwater recharge as well as the average frac-
tions of potential groundwater recharge from precipitation.
Long-term averages of input and simulated annual water bal-
ance components including propagated parameter uncertain-
ties are given in Table 2. Figure 6 shows cumulative poten-
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tial recharge sums for the entire simulation period including
propagated posterior uncertainty for all 14 sites; Fig. 7 shows
the uncertainty in the peak prediction as maximum daily
recharge rates and posterior uncertainty during the same pe-
riod.

Uncertainty in the estimated long-term potential annual
recharge from propagated parameter uncertainty was high-
est in Kalsdorf (95 % IQR =47 mm) and lowest in Aichfeld-
Murboden (95 % IQR =5 mm). Uncertainties in the predic-
tion of long-term and cumulative recharge rates (Fig. 6)
were generally small in relation to the high sums estimated
for mountain and western sites; however, in relation to low
absolute values at dry eastern sites (Kalsdorf, Lobau, and
Frauenkirchen), posterior uncertainties played a more impor-
tant role. The relative uncertainty (IQR / median) in long-
term recharge estimates ranged between 1 % (Gschlossboden
and Lauterach) and 39 % (Lobau). The prediction of peaks
in recharge was generally affected by higher uncertainties
(Fig. 7), especially at western mountainous sites with high
maximum rates (Lauterach, Leutasch, Gschlossboden, and
Sillianberger Alm). In a previous study with similar models
and hydrological conditions, we found n to be the most sensi-
tive parameter for cumulative recharge prediction and K to
be most sensitive for peak prediction, especially under wet
climatic conditions (Schiil et al., 2022). Small uncertainties
in the prediction of long-term recharge sums here were re-
lated to the generally small uncertainties in the VGM shape
parameter n, whereas higher uncertainties in the hydraulic
conductivity parameter K (sometimes in combination with
uncertainties in «) can be considered the main reason for the
greater uncertainty in the peak prediction.
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Figure 6. Median prediction and posterior uncertainty in the long-term estimation of cumulative recharge at 14 Austrian sites.
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to considerably reduce uncertainties in recharge estimation
(Schiil et al., 2022; Schelle et al., 2012). Including additional
measurements in the analysis, however, might not only lead
to different shapes in SHP posteriors but also to altogether
different estimates. This issue requires further investigation
with available soil water monitoring data.

Propagated uncertainties in the soil water fluxes presented
here are a result of parameter uncertainties from the cali-
bration as well as of the sensitivity of the simulated water
fluxes towards the parameters. Uncertainties in water fluxes
were treated as aleatory and were derived from stationary
statistical characteristics. In addition, the epistemic uncer-
tainty associated with the lack of knowledge about the correct
representation of system dynamics (conceptual uncertainty)
and forcing data may affect the overall predictive uncertainty
and reduce the effective information content of observations
(Beven, 2016). Due to their complex and often dynamic na-
ture, epistemic uncertainties pose important conceptual and
numerical challenges. For instance, model conceptual uncer-
tainty can be assessed by comparing different model struc-
tures using specific statistical metrics (e.g., marginal likeli-
hood). This was, however, beyond the scope of the present
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Figure 7. Uncertainty ranges in peaks of the potential recharge flux
at 14 Austrian sites. Maximum daily rates of the long-term simu-
lation period and propagated posterior uncertainties are presented
using box plots.

study, which focuses on the inverse estimation of soil water
fluxes at multiple monitoring stations to discuss the implica-
tions for the water balance. In this framework, an appraisal
of the model structural adequacy through posterior predic-
tive checks appears sufficient. In this work, we were not able
to account for some processes that may have affected wa-
ter balances at the sites: the modeling approach assumed that
the groundwater table was well below the model domain at
all times. At the Lobau site, however, the groundwater table
is shallow, and fluctuations may have reached into the model
domain. In this case, infiltrating water may have reached the
water table earlier than assumed by the model. At the same
time, net recharge would have been reduced if the capillary
fringe extended into the root zone or even to the soil sur-
face and transpiration and evaporation occurred directly from
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groundwater (Doble and Crosbie, 2017). Further, the model-
ing approach here neglected preferential and lateral flow pro-
cesses. The ground surface at the measurement locations was
even; however, it has been shown that heterogeneity and lay-
ering in the soil profiles can lead to lateral flow, even when
the effective hydraulic gradient is vertical (Heilig et al., 2003;
Rimon et al., 2007).

To assess the plausibility of estimated potential recharge
rates, we compared them to literature values where available.
Té6th et al. (2016) assumed annual groundwater recharge
for the western Pannonian Basin of 70mma~'. The re-
gion includes the three southeasternmost sites here (Lobau,
Frauenkirchen, and Kalsdorf), for which potential recharge
rates in this study ranged between 44 and 229 mma~'. For
Wagna in southern Styria, 20km from Kalsdorf, potential
recharge rates of between 296 and 396 mma~! have been
estimated in studies by Collenteur et al. (2021) and Stumpp
et al. (2009). We also compared the estimates with the long-
term (1961-1990) water balance averages for precipitation
and potential and actual evapotranspiration at the catchment
scale from the Hydrological Atlas of Austria (HAO) (BML-
FUW, 2007; Dobesch, 2007; Kling et al., 2007b, a) (Fig. A5).
The mean annual areal actual evapotranspiration estimates of
the HAO (Kling et al., 2007a) are based on water balance cal-
culations from the period from 1961 to 1990. They are com-
parable to our long-term estimates (R> = 0.78), supporting
the plausibility of the water balances established here.

We further evaluated estimated recharge rates at the Leu-
tasch and Gumpenstein locations by comparing the avail-
able lysimeter outflow measurements to modeled median
estimates. This resulted in an acceptable agreement with
R? =0.56 (for the 2008-2018 period) and R? = 0.64 (for
the 2001-2018 period), respectively, and is shown in Fig. A6
in the Appendix, including uncertainties. Variability in
annual seepage measurements between four Gumpenstein
lysimeters was high, with an average uncertainty range of
132mma!. This clearly exceeded the average range of pre-
dictive uncertainty related to the parameter uncertainty of
the modeling at this site (20mma~"). Besides the uncer-
tainty in the seepage measurement, the variability in the
measurements could also be an indicator of spatial hetero-
geneities causing differences in the soil hydrology for indi-
vidual lysimeters. In any case, the high variability in seepage
measurements here emphasizes the need to analyze uncer-
tainties in the estimation of soil water fluxes.

3.3 Statistical analysis of hydrologically relevant
properties

In the following section, we characterize the 14 monitoring
sites according to hydrologically relevant properties, includ-
ing model estimations from the previous section. As uncer-
tainty in long-term actual evapotranspiration and recharge
rates was generally low and in order to enable the analysis

Hydrol. Earth Syst. Sci., 27, 1431-1455, 2023

0.6 ®

Sand

0.4

PC2

0.0 1

—0.2 1

—0.44

—0.6 1

—66 —64 —62 &0 dZ d4 Oh
PC1
Figure 8. A principle component analysis biplot for which the
included variables at the 14 sites are as follows: potential an-
nual groundwater recharge (GWR); annual precipitation (P); an-
nual potential evapotranspiration (ETp); annual actual evapo-
transpiration (ETy); the fraction of groundwater from precipita-
tion (GWR/ P); seasonalities (Seas.) in GWR, P, and ET,; lon-
gitude (Long); altitude (Alt); and sand, silt, clay, and organic mat-
ter (Org) percentages. Clusters of monitoring sites with similar char-
acteristics are shown in orange and blue. The clustering with Eu-
clidean affinity and ward linkage as well as the biplot were produced
using the Scikit-learn module of Pedregosa et al. (2011) in Python.

with common statistical tools, we will use the median values
without consideration of uncertainty ranges in the following.

The seasonal variability in groundwater recharge (quanti-
fied as the coefficient of variation from the standard deviation
between monthly sums and annual means) ranged between
71 % and 265 %. This was consistently higher than the sea-
sonality in precipitation (52 %—76 %) and potential evapo-
transpiration (64 %—76 %), indicating that potential recharge
rates vary significantly more over the year than the meteoro-
logical input variables. We further analyzed the seasonality
in local water balances using a PCA and correlation analysis.
Figure 8 shows the biplot of the PCA with the first and sec-
ond principle components (PC1 and PC2, respectively) ex-
plaining 77 % of the variance in the data, according to the
amount and seasonality of water balance components, the
fraction of potential groundwater recharge from precipita-
tion, and site-specific properties (altitude and longitude as
well as the sand, silt, clay, and organic matter percentages of
the upper soil layers).

Two clusters were established: the five sites in the south
and east of Austria — Aichfeld-Murboden (9), Kalsdorf (10),
Schalladorf (12), Lobau (13), and Frauenkirchen (14) — show
a potential recharge fraction of less than 30 % of annual
precipitation (as low as 8 % in Lobau), a high seasonal-
ity in groundwater recharge (134 %—265 %) and precipita-
tion (67 %—76 %), but a low seasonality in actual evapotran-
spiration (59 %—73 %). The remaining nine sites (of those
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Figure 9. Correlation analysis with pair-wise scatterplots, showing Spearman’s p correlation coefficient and significance levels for the
following variables at the 14 monitoring sites: potential annual groundwater recharge (GWR); annual actual evapotranspiration (ET,); the
aridity index (Al); seasonalities (Seas.) in GWR, ET,, and P; longitude (Long); altitude (Alt); and the percentages of sand and organic

matter (Org).

used in this work) in western to central Austria with a hu-
mid to wet climate show a fraction of potential groundwa-
ter recharge from precipitation of more than 40 % as well as
a low seasonality in precipitation (52 %—68 %). The season-
ality in groundwater recharge at these sites was lower than
in the east (71 %—124 %), but seasonality in actual evapo-
transpiration was higher (75 %—-112 %); this was most pro-
nounced at the three subalpine sites — Gschlossboden (4),
Sillianberger Alm (5), and Zettersfeld (6) — which were in-
fluenced by snow and where little to no actual evapotranspi-

https://doi.org/10.5194/hess-27-1431-2023

ration was estimated outside of the extended summer period
(May—September). An obvious outlier among the monitoring
sites in Fig. 8a was Gschlossboden (4) at high altitude, which
displayed coarse soil, the lowest potential and actual evap-
otranspiration, and the highest estimated potential recharge
rates compared with other sites.

Figure 9 shows the pair-wise scatterplots, correlation coef-
ficients, and significance levels of relevant variables. As pre-
cipitation and potential evapotranspiration were negatively
correlated, we adopted the aridity index (ETp/P) as a pre-
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dictor instead of looking at both variables separately. Season-
ality in potential evapotranspiration is not shown, as no sig-
nificant correlations to other variables were identified. Soil
texture grain size classes were intercorrelated; therefore, we
only used the sand fraction as predictor variable.

Potential annual groundwater recharge rates were nega-
tively correlated with aridity (lower precipitation and higher
potential evapotranspiration). This was expected and was
also supported by the findings of Moeck et al. (2020) at
the global scale. At the Austrian sites, aridity increased and
potential groundwater recharge decreased significantly with
longitude, resulting in lower potential recharge rates for the
eastern than for the western sites. Precipitation and recharge
rates were higher in the west than in the east, following both
the longitudinal gradient in altitude and the climatic influence
of the wet oceanic climate in the west, with high precipitation
and recharge rates even at lower altitudes (Lauterach and Els-
bethen), versus the dry continental climate in the east. In this
study, slopes were not taken into consideration, as the moni-
toring sites were horizontally even and the modeling domain
was limited to the plot scale. Regarding the larger scale (and
actual recharge rates), the occurrence of steep slopes at high
altitudes would be expected to result in more surface runoff
or more interflow instead of recharge (Brunetti et al., 2022;
Moeck et al., 2020) which could reverse the correlation of
recharge rates with altitude.

The fraction of potential groundwater recharge to precipi-
tation (GWR/ P) was strongly correlated with the amount of
precipitation (r = 0.91, p < 0.001). Similarly, Barron et al.
(2012) found an exponential relationship between annual
recharge and rainfall estimates at Australian sites, which they
explained by the correlation of high amounts of precipitation
with high rainfall intensities and long wet periods throughout
the year, leading to an increased fraction of recharge from
precipitation.

Higher potential recharge rates and lower actual evapo-
transpiration were correlated with a higher percentage of
sand. Soils with a greater sand fraction and less fine mate-
rial have a higher hydraulic conductivity and a lower wa-
ter retention capacity, as they let water percolate faster be-
low the root zone (Emerson, 1995; Wohling et al., 2012).
Wang et al. (2009) observed how the fraction of recharge
from precipitation increased with coarser soil texture as the
more rapid deep percolation reduced evapotranspiration. In
this work, however, the relation between potential groundwa-
ter recharge and soil texture was weaker compared with cli-
matic factors, i.e., precipitation and potential evapotranspi-
ration. This corresponded to the findings of the global-scale
analysis by Moeck et al. (2020).

Seasonality in potential groundwater recharge was most
strongly correlated with the aridity index (ET,/P). Sites in
the east, which have more pronounced aridity and low po-
tential recharge rates, were associated with a high seasonal-
ity with extended periods of zero recharge. Estimated poten-
tial groundwater recharge in these regions was concentrated

Hydrol. Earth Syst. Sci., 27, 1431-1455, 2023

in the winter half year. High rates of potential groundwater
recharge were associated with sites where recharge occurred
throughout the year and were, thus, correlated with low sea-
sonality in recharge. Soil texture did not correlate with the
seasonality in estimated potential groundwater recharge. In
this study, we assumed the same lower boundary for all pro-
files to ensure comparability among the sites for which ad-
ditional data from below 1.5 m were not available. However,
the depth of the water table (and thus the thickness of the
unsaturated zone) and structural features causing lateral flow
determine the quantity and timing of water actually reach-
ing the aquifer. With a greater thickness of the unsaturated
zone, the influence of soil water retention characteristics on
the magnitude and temporal variability of actual groundwater
recharge rates might increase (Burri et al., 2019; Cao et al.,
2016; Moeck et al., 2020). In future, data from the deeper un-
saturated zone (> 1.5 m) would be helpful to further improve
the quantification of recharge.

4 Conclusions

In this study, we made use of volumetric soil water content
measurements from multiple depth levels at 14 locations in
Austria to inversely estimate effective soil hydraulic parame-
ters (SHPs) using the physically based HYDRUS-1D model,
and we quantified parameter uncertainties in a Bayesian
probabilistic framework based on multimodal nested sam-
pling. We used the calibrated models for the long-term sim-
ulation of soil water fluxes and associated uncertainties. Fi-
nally, we compared potential recharge rates and actual evap-
otranspiration at the 14 Austrian locations to identify the in-
fluencing factors on the amount and temporal variability of
local water balances.

SHPs were successfully established and resulted in ade-
quate fits of model simulations to observations. The parame-
ter estimation based on soil water content measurements was
partly subject to considerable uncertainties, especially with
respect to the residual water content (6;) and soil hydraulic
conductivity parameters (K;). The latter resulted in consid-
erable uncertainties in predicting the magnitude of recharge
peaks at the sites. Higher uncertainties in the VGM shape
parameters « and n and in the soil hydraulic conductivity
parameter Ky were associated with coarser soil textures. In
general, however, uncertainty in the estimation of the VGM
shape parameters was low and resulted in small uncertainty
ranges for long-term potential groundwater recharge rates.
Absolute uncertainty ranges were between 5 and 47 mma~!,
which corresponded to relative uncertainties in cumulative
recharge prediction (IQR / median) of between 1 % (at sites
with high absolute rates in a wet climate) and 39 % (at dry
eastern sites with small potential recharge rates). Especially
at the latter sites, model uncertainties could be improved by
including additional observations in the calibration.
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Estimated potential groundwater recharge rates at the Aus-
trian soil water monitoring sites were influenced by the east—
west gradient in altitude and climatic conditions: the dry con-
tinental climate at the eastern locations was associated with
low potential groundwater recharge fractions from precipita-
tion and with high seasonality in potential recharge rates. In
contrast, the wet and snow-influenced climate at the western
and central Austrian sites resulted in high potential recharge
rates and lower temporal variability in recharge than in the
east as well as a higher seasonality in actual evapotranspi-
ration. Sandy soil textures were associated with higher po-
tential recharge rates and lower actual evapotranspiration.
However, precipitation and potential evapotranspiration were
more influential variables than soil properties with respect to
estimated potential recharge rates and their temporal variabil-
ity.

The approach could be improved by including informa-
tion on the deeper vadose zone to obtain more insight into
temporal variation and seasonality of actual recharge and to
improve the model structure, including lower boundary con-
ditions. Especially at dry locations, using improved and addi-
tional measurements (e.g., of soil matric potential) could help
reduce uncertainty in cumulative recharge estimation. Addi-
tionally, consideration of sites with varying slopes and the
inclusion of surface runoff simulations in the analysis might
improve representativeness at a larger scale.

Overall, the use of a nested-sampling-based Bayesian ap-
proach proved to be an efficient method to inversely estimate
SHPs and soil water fluxes as well as to quantify associated
uncertainties from soil water monitoring data. The calibrated
models can be used to estimate future groundwater recharge
rates under climate change and to illuminate model uncer-
tainties resulting from SHP uncertainties and a range of cli-
mate scenarios.

Appendix A

Table Al. Site properties and particle size distribution of the upper soil layer (ONORM L 1050, 2016).

Altitude  Longitude Latitude Sand % Silt % Clay %

(ma.s.l.) ©) ©) 0.063-2.0mm  0.002-0.063mm < 0.002 mm
Lauterach 415 9.74 47.48 41 45 14
Leutasch 1135 11.14 47.37 35 51 14
Achenkirch 895 11.64 47.58 20 48 32
Gschlossboden 1737 12.43 47.12 88 12 0
Sillianberger Alm 1500 12.41 46.76 33 63 4
Zettersfeld 1990 12.79 46.87 56 42 2
Elsbethen 428 13.08 47.76 36 59 5
Gumpenstein 690 14.10 47.50 38 53 9
Aichfeld-Murboden 669 14.76 47.21 28 56 16
Kalsdorf 320 15.47 46.95 49 42 9
Pettenbach 466 14.01 47.98 11 75 14
Schalladorf 238 16.14 48.64 17 43 40
Lobau 150 16.53 48.21 29 57 14
Frauenkirchen 124 16.90 47.85 53 33 14
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Table A2. Calibration and validation periods, showing the goodness of fit (root-mean-square error, RMSE) between the median prediction
and measurements.

Calibration Validation Calibration RMSE  Validation RMSE
(cm3 cm73) (cm3 cm73)
Lauterach 1 Mar-31 Oct 2015 1 Jan-31 Dec 2016 0.025 0.028
Leutasch 1 Mar-31 Oct 2014 1 Mar-31 Oct 2017 0.018 0.021
Achenkirch 1 May-31 Oct 2018 1 Jan-31 Dec 2017 0.023 0.037
Gschlossboden? 1 Apr-30 Sep 2018 1 Jan-31 Dec 2018 0.017 0.019
Sillianberger Alm? 1 Mar-31 Oct 2018 1 Jan-31 Dec 2018 0.026 0.020
Zettersfeld 1 Apr-30 Sep 2017 1 Jan 2014-31 Dec 2015 0.022 0.020
Elsbethen 1 Mar-31 Oct 2015 1 Jan-31 Dec 2012 0.018 0.015
Gumpenstein 15 Apr—15 Oct 2012 1 Mar-31 Dec 2011 0.011 0.014
Aichfeld-Murboden 15 Apr—15 Oct 2016 15 Aug 2017-31 Dec 2018 0.015 0.021
Kalsdorf 1 Mar-31 Oct 2007 1 Jan-31 Dec 2008 0.021 0.037
Pettenbach® 23 Apr—14 Oct 2014 24 Apr—24 Sep 2013 0.020 0.067
Schalladorf 1 Mar-31 Oct 2010 1 Mar 2013-31 Oct 2014 0.009 0.028
Lobau 1 Mar-31 Oct 2012 1 Jan-31 Dec 2000 0.028 0.054
Frauenkirchen 1 Mar-31 Oct 2015 1 Jan 2012-31 Dec 2014 0.021 0.036

@ No validation data are available outside the calibration year; instead, the RMSE for the entire year (2018) was calculated. b The Pettenbach calibration
period was during maize cultivation and the validation period was during soy bean cultivation; root parameters were adjusted, and potential
evapotranspiration estimation was estimated with the corresponding crop coefficients (Allen et al., 1998).
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Figure A1l. Residual plots for the calibration at Gumpenstein: (a) histogram of residuals, (b) quantile—quantile (QQ) plots, and (c¢) autocor-
relation function (ACF) plots. The upper graphs show residuals of the upper soil layer (1) and the lower graphs show residuals of the lower
soil layer (L2).
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Table A3. The soil layers in HYDRUS-1D and the prior parameter ranges of the Bayesian analysis.

Site Depth (cm) 6; 05 o (em™1) n (=) K
(crn3 cm73) (cm3 cm73) (cm d-! )

Lauterach L1 0-24  0.00-0.20 0.30-0.50  0.0001-0.1000  1.01-2.00 1-200
L2 25-150  0.00-0.20 0.30-0.50  0.0001-0.1000  1.01-2.00 1-200

Leutasch Ll 0-24  0.00-0.10 0.25-0.50  0.0001-0.5000 1.01-2.70 1-1000
L2 25-150  0.00-0.10  0.15-0.40  0.0001-0.5000 1.01-3.50 1-1000

Achenkirch L1 0-15  0.00-0.25 0.40-0.60  0.0001-0.5000  1.01-2.70 1-1000
L2 16-150  0.00-0.08 0.10-0.20  0.0001-1.0000 1.01-3.50  10-10000

Gschldssboden L1 0-22  0.00-0.05 0.20-0.35  0.0001-1.0000 1.01-2.70  10-10000
L2 23-150  0.00-0.05 0.20-0.35  0.0001-1.0000 1.01-3.50  10-10000

Sillianberger Alm L1 0-24  0.00-0.20 0.30-0.60  0.0001-0.2000  1.01-2.00 1-5000
L2 25-150  0.00-020  0.30-0.60  0.0001-0.2000 1.01-2.00 1-5000

Zettersfeld L1 0-49  0.00-0.25 0.30-0.60  0.0001-1.0000 1.01-2.70 1-5000
L2 50-150  0.00-0.08 0.10-040  0.0001-1.0000 1.01-3.50 1-5000

Elsbethen Ll 0-24  0.00-0.20 0.30-0.50  0.0001-0.1000  1.01-2.00 1-200
L2 25-150  0.00-020  0.30-0.50  0.0001-0.1000 1.01-2.00 1-200

Gumpenstein L1 0-24  0.00-0.20 0.25-0.60  0.0001-0.5000  1.01-2.70 0.1-500
L2 25-150  0.00-020  0.25-0.60  0.0001-0.5000 1.01-2.70 0.1-500

Aichfeld-Murboden L1 0-74  0.00-0.25 0.30-0.60  0.0001-0.5000 1.01-2.70 1-1000
L2 75-150  0.00-0.15 0.17-0.40  0.0001-1.0000  1.01-2.70 1-1000

Kalsdorf L1 0-24  0.00-0.10 0.30-0.60  0.0001-0.2000  1.01-2.00 1-1000
L2 25-150  0.00-0.10  0.30-0.60  0.0001-0.2000 1.01-2.00 1-1000

Pettenbach L1 0-24  0.00-0.25 0.30-0.60  0.0001-0.5000  1.01-2.70 0.1-500
L2 25-150  0.00-0.25 0.30-0.60  0.0001-1.0000 1.01-2.70 0.1-500

Schalladorf Ll 0-44  0.00-0.20 0.40-0.60  0.0001-0.1000  1.01-2.00 1-50
L2 45-150  0.00-020  0.30-0.50  0.0001-0.1000  1.01-2.00 1-50

Lobau L1 0-100  0.00-0.15 0.35-0.75  0.0001-1.0000 1.01-2.70 1-1000
L2 101-150  0.00-0.25 0.35-0.60  0.0001-1.0000 1.01-2.70 1-1000

Frauenkirchen L1 0-24  0.00-0.20 0.30-0.60  0.0001-0.2000 1.01-2.00 1-500
L2 25-150  0.00-0.20 0.30-0.60  0.0001-0.2000  1.01-2.00 1-500
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Figure A2. Calibration with soil water content measurements at all 14 sites: the gray bands show the measurement, including the area of the
calibrated measurement error o, and the blue lines show the prediction with the median parameter estimates for each measurement depth in
the upper and lower soil layer.

Hydrol. Earth Syst. Sci., 27, 1431-1455, 2023 https://doi.org/10.5194/hess-27-1431-2023



M. Schiibl et al.: Estimating vadose zone water fluxes from soil water monitoring data

6,1 = 0.08+39¢

" 65, = 0.58+391

ay = 0.06323

— .02
ny = 1.09+392

1449

K51 = 562t1219914
Q
Q i}
Hq’q’@
n AW
5<'LQQ . —
35 f@iy
N T —
X D O (DA N CIRMR AN O H O O O O O
P R AV A° RACN N2 82 O LN PSS
7 07 0707 (P P:0? Q7070 0 SN T RO
6n 6s1 a n Ks1

Figure A3. Marginal posterior distributions (one-dimensional projection on top of each column and the joint distributions of each two param-

eters below) of estimated SHPs for the upper soil layer at Zettersfeld. Presented are the respective residua

I and saturated water content param-

eters O and 6 (cm3 cm_3), the VGM shape parameters o (cm™ 1) and n (-), and the saturated hydraulic conductivity parameter K (cm d-! ).

https://doi.org/10.5194/hess-27-1431-2023

Hydrol. Earth Syst. Sci., 27, 1431-1455, 2023



1450 M. Schiibl et al.: Estimating vadose zone water fluxes from soil water monitoring data
RZ= 0.38 ] [RT=0.97 7l [RT= 098 RZ = 0.45 g
7’ // //
0.4 A ' b ‘ b ’ b s
4 4
4 4
4 4
/’ , /’ /’
0.2 1 // 1 B ,/ g ,/
7/ ‘
< 01 ’ 02 < 03 ' 04
0.0 : . : . : ; ] . :
—~~
‘?E RZ= 0.78 7l [RT=0.96 7] [RT=0.78 7| [RT=0.66 g
(&) i i i i i
(E) i //, v’ ’
~ td 7’ 4
— 0.2 1 Vi 1 ’ 1 s 1 e
< // // // //
Q9 , , , ,
C ook 05 4 06 4 07 4 08
S o : ; . : : ; ; :
o
—
% RZ= 0.97 ]l [RT=0.79 ]l [RT= 034 ] [F=o7a g
4 4 4 4
= w | w || o |
©
@ 4 ’ ® 4
: 0.2 1 1 ; 1
£ » - /
'(/_) /’ // /,
0.0 #— —09 i —10 A —11 A —12
00 02 04 0.0 02 04
R?= 0.60 /] [Re= o068 7
/, ,I
041 P! 1 ‘ o Layer 1
0.2 1 . ® Layer 2
e
,/
0.0 ¥ 13 —14
0.0 02 04 00 02 04

Obs. soil water content (cm® cm™®)

Figure A4. Model validation showing the coefficient of determination (R 2) and scatterplots of the simulated and observed soil water content
from the upper (layer 1) and lower (layer 2) soil layers for the 14 sites: (01) Lauterach, (02) Leutasch, (03) Achenkirch, (04) Gschlossbo-
den, (05) Sillianberger Alm, (06) Zettersfeld, (07) Elsbethen, (08) Gumpenstein, (09) Aichfeld-Murboden, (10) Kalsdorf, (11) Pettenbach,
(12) Schalladorf, (13) Lobau, and (14) Frauenkirchen. The dashed diagonal black line is the 1: 1 line. Validation periods are given in Ta-
ble A2.
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Figure AS. Scatterplots comparing the long-term averages of precipitation (P) and potential and actual evapotranspiration (ETp and ETy,
respectively) from the digital Hydrological Atlas of Austria (HAO) (BMLFUW, 2007) with the corresponding rates from simulations in this
study. The dashed diagonal black is the 1 : 1 line. Potential evapotranspiration in the HAO was calculated by Dobesch (2007) using the FAO
approach described by Doorenbos and Pruitt (1977), resulting in lower values than those of this study which were calculated for a grass

reference according to Allen et al. (1998).
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Figure A6. Model validation using lysimeter data from Leutasch and Gumpenstein. Scatterplots and coefficients of determination (R2)
are shown for simulated and observed annual seepage flow. Blue dots show median estimates and the gray error bars depict the 95 %
credible interval from propagated parameter uncertainty. The dashed diagonal black line is the 1: 1 line. Leutasch seepage measurements
were obtained from a single lysimeter; for Gumpenstein, the 95 % uncertainty interval in the lysimeter measurements was calculated from a

cluster of four lysimeters.

Code availability. The software code of the HYDRUS-1D hydro-
logical model is publicly available at https://www.pc-progress.com
(PC-PROGRESS, 2023). The code for the MultiNest Bayesian
inference tool is available at https://github.com/rjw57/MultiNest
(Wareham, 2023). The reference entries for these third-party codes
(given in the paper) are as follows:

- HYDRUS - Simiinek et al. (2016);
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